基于边缘计算与信任值的可信数据收集方法
作者:
作者简介:

邱磊(1994-),男,湖北十堰人,硕士生,主要研究领域为边缘计算,无线传感器网络;蒋文贤(1974-),男,副教授,CCF专业会员,主要研究领域为物联网,网络安全,区块链;李玉泽(1994-),男,主要研究领域为边缘计算,无线传感器网络;於志勇(1982-),男,博士,副教授,博士生导师,CCF专业会员,主要研究领域为普适计算,移动社交网络,群智感知;马樱(1982-),男,博士,副教授,CCF专业会员,主要研究领域为数据挖掘,物联网,人工智能;王田(1982-),男,博士,教授,CCF高级会员,主要研究领域为物联网,云计算,雾计算/边缘计算,网络信息安全,软件安全,社交网络.

通讯作者:

王田,E-mail:wangtian@hqu.edu.cn

基金项目:

数据挖掘与智能推荐福建省高校重点实验室开放基金(DM201902);福建省网络计算与智能信息处理重点实验室开放课题;福建省社会科学规划基金(FJ2018B038);福建省自然科学基金(2018J01092);华侨大学研究生科研创新基金(17014083012)


Trustworthy Data Collection Method Based on Edge Computing and Trust Value
Author:
Fund Project:

Open Fund of Key Laboratory of Data Mining and Intelligent Recommendation, Fujian Province University (DM201902); Open Foundation of Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing; General Projects of Social Sciences in Fujian Province (FJ2018B038); Natural Science Foundation of Fujian Province of China (2018J01092); Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University (17014083012)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    物联网应用中,底层传感网所采集的数据是上层决策的基础和一切应用的根本.如果收集的数据本身就是有问题、不可信的,这将使得上层的数据保护和应用成为空中楼阁.为了解决数据不可信的问题,提出了基于移动边缘节点的可信数据收集方案.通过对节点的评估,将节点的信任值用于路径选择,采用移动边缘节点来充当移动元素,访问可信的簇头节点,从而实现高效的可信数据收集.对所提出的基于效用值的可信数据收集算法(UTDC)进行了理论分析和广泛的模拟实验.实验结果表明,所提出的基于效用值的可信数据收集算法可以很好地避开不可信的节点,有效降低了网络延迟,延长了网络的生命周期.

    Abstract:

    In the internet of things application, the data collected by the underlying sensor network is the basis of the upper decision and the foundation of all applications. If the collected data itself is problematic and untrustworthy, this will make the upper level of data protection and application a castle in the air. In order to solve the problem of untrustworthy data, a trustworthy data collection scheme based on mobile edge nodes is proposed. Through the evaluation of the node, the trust value of the node is used for path selection, and the mobile edge node is used as a mobile element to access the trustworthy cluster head node, thereby achieving efficient and reliable data collection. Theoretical analysis and extensive simulation experiments are carried out on the proposed trustworthy data collection algorithm based on utility value (UTDC). The experimental results show that the proposed trustworthy data collection algorithm based on utility value can avoid untrustworthy nodes, effectively reduce network delay and prolong the life cycle of the network.

    参考文献
    [1] Bi R, Li JZ, Gao H. Approximate monitoring algorithm for minimizing communication cost in wireless sensor networks. Chinese Journal of Computers, 2015,38(10):2092-2105(in Chinese with English abstract).
    [2] Li WX, Fu XW. Survey on invulnerability of wireless sensor networks. Chinese Journal of Computers, 2015,38(3):625-647(in Chinese with English abstract).
    [3] Bhuiyan MZA, Wang G, Wu J, Cao JN, Liu XF, Wang T. Dependable structural health monitoring using wireless sensor networks. IEEE Trans. on Dependable and Secure Computing, 2017,14(4):363-376.
    [4] Gao S, Zhang H, Das S. K. Efficient data collection in wireless sensor networks with path-constrained mobile sinks. IEEE Trans. on Mobile Computing, 2011,10(4):592-608.
    [5] Wang T, Zhang GX, Liu AF, Bhuiyan MZA, Jin Q. A secure IoT service architecture with an efficient balance dynamics based on cloud and edge computing. IEEE Internet of Things Journal, 2019,6(3):4831-4843.
    [6] Wang T, Zhou JY, Chen XL, Wang GJ, Liu AF, Liu Y. A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing. IEEE Trans. on Emerging Topics in Computational Intelligence, 2018,2(1):3-12.
    [7] Shi GT, Liao MH. Movement-assisted data gathering scheme with load-balancing for sensor networks. Ruan Jian Xue Bao/Journal of Software, 2007,18(9):2235-2244(in Chinese with English abstract).
    [8] Kaswan A, Nitesh K, Jana PK. Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU Int'l Journal of Electronics and Communications, 2017,73:110-118.
    [9] Awan KA, Din IU, Almogren A, Guizani M, Altameem A, Jadoon SU. Robust trust-A pro-privacy robust distributed trust management mechanism for Internet of Things. IEEE Access, 2019,7:62095-62106.
    [10] Wang T, Zhou JY, Liu AF, Bhuiyan MZA, Wang GJ, Jia WJ. Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet of Things Journal, 2019,6(3):4272-4282.
    [11] Wen W, Zhao S, Shang C, Chang CY. Eapc:Energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sensors Journal, 2018,18(2):890-901.
    [12] Wang T, Zhang GX, Cai SB, Jia WJ, Wang GJ. Survey on trust evaluation mechanism in sensor-cloud. Journal on Communications, 2018,39(6):37-51(in Chinese with English abstract).
    [13] Wu YK, Huang HY, Wu Q, Liu AF, Wang T. A risk defense method based on microscopic state prediction with partial information observations in social networks. Journal of Parallel and Distributed Computing, 2019,131:189-199.
    [14] Wang T, Liang Y, Jia W, Arif M, Xie MD. Coupling resource management based on fog computing in smart city systems. Journal of Network and Computer Applications, 2019,135:11-19.
    [15] Bhuiyan MZA, Wu J, Wang GJ, Wang T, Hassan MM. E-sampling:event-sensitive autonomous adaptive sensing and low-cost monitoring in networked sensing systems. ACM Trans. on Autonomous and Adaptive Systems, 2017,12(1):1-29.
    [16] Zeng JD, Wang T, Jia WJ,Peng SL, Wang GJ. A survey on sensor-cloud. Journal of Computer Research and Development, 2017,54(5):925-939(in Chinese with English abstract).
    [17] Wang T, Bhuiyan MZA, Wang GJ, Rahman AM, Wu J, Cao JN. Big data reduction for a smart city's critical infrastructural health monitoring. IEEE Communications Magazine, 2018,56(3):128-133.
    [18] Xing GL, Li M, Wang T, Jia WJ, Huang J. Efficient rendezvous algorithms for mobility-enabled wireless sensor networks. IEEE Trans. on Mobile Computing, 2011,11(1):47-60.
    附中文参考文献:
    [1] 毕冉,李建中,高宏.无线传感器网络中最小化通信开销的近似监测算法.计算机学报,2015,38(10):2092-2105.
    [2] 李文锋,符修文.无线传感器网络抗毁性.计算机学报,2015,38(3):625-647.
    [7] 石高涛,廖明宏.传感器网络中具有负载平衡的移动协助数据收集模式.软件学报,2007,18(9):2235-2244.
    [12] 王田,张广学,蔡绍滨,贾维嘉,王国军.传感云中的信任评价机制研究进展.通信学报,2018,39(6):37-51.
    [16] 曾建电,王田,贾维嘉,彭绍亮,王国军.传感云研究综述.计算机研究与发展,2017,54(5):925-939.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邱磊,蒋文贤,李玉泽,於志勇,马樱,王田.基于边缘计算与信任值的可信数据收集方法.软件学报,2019,30(S1):71-81

复制
分享
文章指标
  • 点击次数:2099
  • 下载次数: 4879
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-09-15
  • 在线发布日期: 2020-01-02
文章二维码
您是第20054978位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号