一种基于视觉特征组合构造的零样本学习方法
DOI:
作者:
作者单位:

作者简介:

杨刚(1979-),男,山东青岛人,博士,副教授,CCF专业会员,主要研究领域为多媒体信息检索,深度学习,神经网络,软计算;李锡荣(1983-),男,博士,副教授,博士生导师,CCF专业会员,主要研究领域为人工智能,媒体计算;刘金露(1995-),女,硕士生,主要研究领域为计算机视觉;许洁萍(1966-),女,博士,副教授,CCF专业会员,主要研究领域为多媒体信息处理.

通讯作者:

李锡荣,E-mail:xirong@ruc.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61773385,61672523)


Visual Feature Combination Approach for Zero-Shot Learning
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61773385, 61672523)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    零样本学习是机器学习和图像识别领域重要的研究热点.零样本学习方法通常利用未见类与可见类之间的类别语义信息,将从可见类样本学习到的知识转移到未见类,实现对未见类样本的分类识别.提出了一种基于视觉特征组合构造的零样本学习方法,采用特征组合的方式构造产生大量未见类样例特征,将零样本学习问题转化为标准的监督学习分类问题.该方法模拟了人类的联想认知过程,其主要包括4步:特征-属性关系提取、样例构造、样例过滤、特征域适应.在可见类样本上抽取类别属性与特征维度的对应关系;利用特征-属性关系,通过视觉特征的组合构造的方式,产生未见类样例;引入非相似表示,过滤掉不合理的未见类样例;提出半监督特征域适应和无监督特征域适应,实现未见类样例的线性转换,产生更有效的未见类样例.在3个基准数据集(AwA,AwA2和SUN)上的实验结果显示,该方法效能优越,在数据集AwA上获得了当前最优的Top-1分类正确率82.6%.实验结果证明了该方法的有效性和先进性.

    Abstract:

    Zero-Shot learning is an important research in the field of machine learning and image recognition. Zero-Shot learning methods normally use the semantic information among unseen classes and seen classes to transfer the knowledge which is learned from examples of seen classes to unseen classes, so as to recognize and classify the examples of unseen classes. In this study, a zero-shot learning approach based on construction of visual feature combination is proposed. The approach generates many examples of unseen class on visual feature level by the way of feature combination, which is first proposed, and thus transforms zero-shot learning problem to be a traditional classification problem solved by supervised learning. The approach mimics human cognition process of associative memory, and includes four steps:feature-attribute relation extraction, example construction, example screening, and domain adaption. On training examples of seen classes, the relationship between class attributes and dimensions of feature is extracted; on visual feature level, examples of unseen classes are generated by visual feature combination; dissimilarity representation is introduced to filter the generated examples of unseen classes; semi-supervised and unsupervised feature domain adaption are proposed to linearly transform the generated examples of unseen classes to be more effective. The proposed approach shows superior performance on three benchmark datasets (AwA, AwA2, and SUN), especially on dataset AwA, it obtains 82.6% top-1 accuracy which is the best result as far as we know. Experiment results demonstrate the effectiveness and superiority of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

杨刚,刘金露,李锡荣,许洁萍.一种基于视觉特征组合构造的零样本学习方法.软件学报,2018,29(S2):16-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-14
  • 最后修改日期:2018-09-30
  • 录用日期:
  • 在线发布日期: 2019-08-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号