无线传感器网络中移动目标探测跟踪研究进展
作者:
基金项目:

国家重点基础研究发展计划(973)(2015CB352401);国家自然科学基金(61532013,61772148,61672441);华侨大学研究生科研创新能力培育计划(17013083005)


Research Advance of Detection-Centric Target Tracking with Mobile Elements in Wireless Sensor Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [72]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统的固定无线传感器网络在进行目标跟踪过程中面临着跟踪质量较低、网络能耗较高等问题.移动传感器网络提供了新的解决方法,即移动式目标跟踪.目前的研究大多将被跟踪目标的探测和定位混为一谈.故此,区分了以探测为主和以定位为主的两类方法,着重介绍以探测为主的移动式目标跟踪方法的研究现状.通过对比现有方法在跟踪质量和网络能耗等方面的优缺点,揭示了现有研究存在的问题,总结了移动式目标跟踪领域存在的研究热点和趋势.

    Abstract:

    Traditional stationary wireless sensor networks usually have problems, such as low tracking quality, high energy consumption and so on, during the process of target tracking. More and more mobile elements, i.e., mobile sensors, are used in wireless sensor networks and thus bring new solutions for target tracking. The existing research usually confuses detecting the target with locating the target. After distinguishing between the detection-centric and localization-centric methods, this paper reviews specifically the current research status of the detection-centric target tracking methods. By comparing the merits and demerits of the existing methods in aspects like tracking quality, energy consumption, etc., it reveals their problems. In the end, it summarizes some possible research hotspots and tendency of mobile solutions in many aspects.

    参考文献
    [1] Guo S, He L, Gu Y, et al. Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Trans. on Computers, 2014,63(11):2787-2802.
    [2] Wang T, Peng Z, Liang J, et al. Following targets for mobile tracking in wireless sensor networks. ACM Trans. on Sensor Networks, 2016,12(4):31.
    [3] Durisic MP, Tafa Z, Dimic G, Milutinovic V. A survey of military applications of wireless sensor networks. In:Proc. of the Mediterranean Conf. on Embedded Computing (MECO). IEEE, 2012. 196-199.
    [4] Corke P, Wark T, Jurdak R, Hu W, Valencia P, Moore D. Environmental wireless sensor networks. Proc. of the IEEE, 2010,98(11):1903-1917.
    [5] Liu X, Cao J, Tang S, Guo P. A generalized coverage-preserving scheduling in WSNs:A case study in structural health monitoring. In:Proc. of the INFOCOM. IEEE, 2014. 718-726.
    [6] Zhang D, Huang J, Li Y, Zhang F, Xu C, He T. Exploring human mobility with multi-source data at extremely large metropolitan scales. In:Proc. of the Int'l Conf. on Mobile Computing and Networking. ACM, 2014. 201-212.
    [7] Zhou L, Wang Z, Wang Y. Multi-View cooperative tracking multiple mobile object based on dynamic occlusion threshold. Journal of Computer Research and Development, 2014,51(4):813-823(in Chinese with English abstract).
    [8] Chen L, Yan B, Zhang J, Hu J, Liu Z, Liu Y, Xu Z, Luo Q. Neighbor discovery algorithm in mobile low duty cycle WSNs. Ruan Jian Xue Bao/Journal of Software, 2014,25(6):1352-1368(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4493.htm[doi:10.13328/j.cnki.jos.004493]
    [9] Lu X, Cheng L, Luo S. Adaptive node scheduling algorithm for target tracking in wireless sensor networks. Journal on Communications, 2015,36(4):70-80(in Chinese with English abstract).
    [10] Aziz AA, Sekercioglu YA, Fitzpatrick P, et al. A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks. IEEE Communications Surveys & Tutorials, 2013,15(1):121-144.
    [11] Caione C, Brunelli D, Benini L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans. on Industrial Informatics, 2012,8(1):30-40.
    [12] Zhang X, Dai H, Xu L, Chen G. Mobility-Assisted data gathering strategies in WSNs Ruan Jian Xue Bao/Journal of Software, 2013,24(2):198-214(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4349.htm[doi:10.3724/SP.J.1001.2013. 04349]
    [13] Zhu C, Shu L, Hara T, et al. A survey on communication and data management issues in mobile sensor networks. Wireless Communications and Mobile Computing, 2014,14(1):19-36.
    [14] Wang T, Peng Z, Chen Y, Cai Y, Tian H. Continuous tracking for mobile targets with mobility nodes in wsns. In:Proc. of the Int'l Conf. on Smart Computing (SMARTCOMP). IEEE, 2014. 261-268.
    [15] Wang T, Wang W, Cao J, et al. Interoperable localization for mobile group users. Computer Communications, 2017,105:53-65.
    [16] Peng Z, Wang T, Wang W, Wang G, Lai Y. Survey of location-centric target tracking with mobile elements in wireless sensor networks. Journal of Central South University (Science and Technology), 2017,48(3):701-711.
    [17] Wang G, Bhuiyan MZA, Cao J, et al. Detecting movements of a target using face tracking in wireless sensor networks. IEEE Trans. on Parallel and Distributed Systems, 2014,25(4):939-949.
    [18] Jindal A, Liu M. Networked computing in wireless sensor networks for structural health monitoring. IEEE/ACM Trans. on Networking, 2012,20(4):1203-1216.
    [19] Drawil NM, Amar HM, Basir OA. GPS localization accuracy classification:A context-based approach. IEEE Trans. on Intelligent Transportation Systems, 2013,14(1):262-273.
    [20] Xu Y, Choi J, Oh S. Mobile sensor network navigation using gaussian processes with truncated observations. IEEE Trans. on Robotics, 2011,27(6):1118-1131.
    [21] Pakrooh P, Pezeshki A, Scharf LL, et al. Distribution of the Fisher information loss due to random compressed sensing. In:Proc. of the 49th Asilomar Conf. on Signals, Systems and Computers. IEEE, 2015. 1487-1489.
    [22] Yu X, Huang W, Lan J, Qian X. A novel virtual force approach for node deployment in wireless sensor network. In:Proc. of the Int'l Conf. on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2012. 359-363.
    [23] Ding L, Wu W, Willson J, Wu L, Lu Z, Lee W. Constant-Approximation for target coverage problem in wireless sensor networks. In:Proc. of the INFOCOM. IEEE, 2012. 1584-1592.
    [24] Rizvi S, Qureshi HK, Khayam SA, Rakocevic V, Rajarajan M. A1:An energy efficient topology control algorithm for connected area coverage in wireless sensor networks. Journal of Network and Computer Applications, 2012,35(2):597-605.
    [25] Pantazis NA, Nikolidakis SA, Vergados DD. Energy-Efficient routing protocols in wireless sensor networks:A survey. IEEE Communications Surveys & Tutorials, 2013,15(2):551-591.
    [26] Mahboubi H, Moezzi K, Aghdam AG, et al. Distributed deployment algorithms for efficient coverage in a network of mobile sensors with nonidentical sensing capabilities. IEEE Trans. on Vehicular Technology, 2014,63(8):3998-4016.
    [27] DArienzo M, Iacono M, Marrone S, et al. Estimation of the energy consumption of mobile sensors in WSN environmental monitoring applications. In:Proc. of the 27th Int'l Conf. on Advanced Information Networking and Applications Workshops (WAINA). IEEE, 2013. 1588-1593.
    [28] Papotto G, Carrara F, Finocchiaro A, et al. A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes. IEEE Journal of Solid-State Circuits, 2014,49(2):335-346.
    [29] Teng J, Snoussi H, Richard C. Decentralized variational filtering for target tracking in binary sensor networks. IEEE Trans. on Mobile Computing, 2010,9(10):1465-1477.
    [30] Tan R, Xing G, Wang J, So HC. Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans. on Mobile Computing, 2010,9(3):317-332.
    [31] Li WL, Jia YM. Consensus-Based distributed multiple model UKF for jump markov nonlinear systems. IEEE Trans. on Automatic Control, 2012,57(1):227-233.
    [32] Mourad F, Chehade H, Snoussi H, Yalaoui F, Amodeo L, Richard C. Controlled mobility sensor networks for target tracking using ant colony optimization. IEEE Trans. on Mobile Computing, 2012,11(8):1261-1273.
    [33] Ganganath N, Cheng C-T, Tse C. Distributed anti-flocking algorithms for dynamic coverage of mobile sensor networks. IEEE Trans. on Industrial Informatics, 2016,12(5):1795-1805.
    [34] Hoang DC, Yadav P, Kumar R, et al. Real-Time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Trans. on Industrial Informatics, 2014,10(1):774-783.
    [35] Incel ÖD, Ghosh A, Krishnamachari B, Chintalapudi K. Fast data collection in tree-based wireless sensor networks. IEEE Trans. on Mobile Computing, 2012,11(1):86-99.
    [36] Du H, Ye Q, Wu W, Lee W, Li D, Du D, Howard S. Constant approximation for virtual backbone construction with guaranteed routing cost in wireless sensor networks. In:Proc. of the INFOCOM. IEEE, 2011. 1737-1744.
    [37] Vo BN, Vo BT, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. on Signal Processing, 2014,62(24):6554-6567.
    [38] Olfati-Saber R. Distributed tracking for mobile sensor networks with information-driven mobility. In:Proc. of the American Control Conf. (ACC). IEEE, 2007. 4606-4612.
    [39] Olfati-Saber R, Jalalkamali P. Coupled distributed estimation and control for mobile sensor networks. IEEE Trans. on Automatic Control, 2012,57(10):2609-2614.
    [40] Jalalkamali P, Olfati-Saber R. Information-Driven self-deployment and dynamic sensor coverage for mobile sensor networks. In:Proc. of the American Control Conf. (ACC). IEEE, 2012. 4933-4938.
    [41] Hoffmann GM, Tomlin CJ. Mobile sensor network control using mutual information methods and particle filters. IEEE Trans. on Automatic Control, 2010,55(1):32-47.
    [42] Wu W, Zhang F. A switching strategy for target tracking by mobile sensing agents. Journal of Communications, 2013,8(1):47-54.
    [43] Xu EY, Ding Z, Dasgupta S. Target tracking and mobile sensor navigation in wireless sensor networks. IEEE Trans. on Mobile Computing, 2013,12(1):177-186.
    [44] Bhuiyan MZA, Wang G, Vasilakos AV. Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Trans. on Computers, 2015,64(7):1968-1982.
    [45] Wimalajeewa T, Jayaweera SK. Mobility assisted distributed tracking in hybrid sensor networks. In:Proc. of the 2010 IEEE Int'l Conf. on Communications (ICC). IEEE, 2010. 1-5.
    [46] Yang Z, Shi X, Chen J. Optimal coordination of mobile sensors for target tracking under additive and multiplicative noises. IEEE Trans. on Industrial Electronics, 2014,61(7):3459-3468.
    [47] Hu J, Hu X. Nonlinear filtering in target tracking using cooperative mobile sensors. Automatica, 2010,46(12):2041-2046.
    [48] Yanmaz E, Guclu H. Stationary and mobile target detection using mobile wireless sensor networks. In:Proc. of the INFOCOM. IEEE, 2010. 1-5.
    [49] Djurić PM, Beaudeau J, Bugallo MF. Non-Centralized target tracking with mobile agents. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. 5928-5931.
    [50] Abdel Rahman M, Abu-El-Haija AI, Al-Najjar HM. On the detection of intelligent mobile targets in a mobile sensor network. In:Proc. of the 7th Int'l Wireless Communications and Mobile Computing Conf. (IWCMC). IEEE, 2011. 1268-1275.
    [51] Fu Y, Yang L. Sensor mobility control for multitarget tracking in mobile sensor networks. Int'l Journal of Distributed Sensor Networks, 2014,10(3):1-15.
    [52] Bai J, Cheng P, Chen J, Guenard A, Song Y. Target tracking with limited sensing range in autonomous mobile sensor networks. In:Proc. of the 8th Int'l Conf. on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2012. 329-334.
    [53] Semnani SH, Basir OA. Semi-Flocking algorithm for motion control of mobile sensors in large-scale surveillance systems. IEEE Trans. on Cybernetics, 2015,45(1):129-137.
    [54] Zhan P, Casbeer DW, Swindlehurst AL. Adaptive mobile sensor positioning for multi-static target tracking. IEEE Trans. on Aerospace and Electronic Systems, 2010,46(1):120-132.
    [55] Ghadban N, Honeine P, Mourad-Chehade F, et al. Mobility using first and second derivatives for kernel-based regression in wireless sensor networks. In:Proc. of the 2014 Int'l Conf. on Systems, Signals and Image Processing (IWSSIP). IEEE, 2014. 203-206.
    [56] Alhmiedat T, Salem AOA, Taleb AA. An imporved decentralized approach for tracking multiple mobile targets through ZigBee WSNs. Int'l Journal of Wireless & Mobile Networks, 2013,5(3):61-76.
    [57] Patel NB. Target localization improving tracking accuracy and energy efficiency in wireless sensor network[Ph.D. Thesis]. New York:Amrut Mody School of Management, Ahmedabad University, 2015. 1-21.
    [58] La HM, Sheng W. Dynamic target tracking and observing in a mobile sensor network. Robotics and Autonomous Systems, 2012,60(7):996-1009.
    [59] Chin J-C, Dong Y, Hon W-K, Ma C Y-T, Yau DK. Detection of intelligent mobile target in a mobile sensor network. IEEE/ACM Trans. on Networking (TON), 2010,18(1):41-52.
    [60] Ferrari S, Fierro R, Perteet B, Cai C, Baumgartner K. A geometric optimization approach to detecting and intercepting dynamic targets using a mobile sensor network. SIAM Journal on Control and Optimization, 2009,48(1):292-320.
    [61] Wei H, Ferrari S. A geometric transversals approach to sensor motion planning for tracking maneuvering targets. IEEE Trans. on Automatic Control, 2015,60(10):2773-2778.
    [62] Mahboubi H, Momeni A, Aghdama A, Sayrafian-Pour K, Marbukh V. Minimum cost routing with controlled node mobility for target tracking in mobile sensor networks. In:Proc. of the American Control Conf. (ACC). IEEE, 2010.
    [63] Prabhavathi M, Rajeshwari R. Cluster-Based mobility management for target tracking in mobile sensor networks. In:Proc. of the Int'l Conf. on Advanced Computing (ICoAC). IEEE, 2011. 198-203.
    [64] Okaie Y, Nakano T, Hara T, Hosoda K, Hiraoka Y, Nishio S. Modeling and performance evaluation of mobile bionanosensor networks for target tracking. In:Proc. of the Int'l Conf. on Communications (ICC). IEEE, 2014. 3969-3974.
    [65] Bar-Noy A, Kessler I, Sidi M. Mobile users:To update or not to update? Wireless Networks, 1995,1(2):175-185.
    [66] Mitsche D, Resta G, Santi P. The random waypoint mobility model with uniform node spatial distribution. Wireless Networks, 2014,20(5):1053-1066.
    附中文参考文献:
    [7] 周良毅,王智,王营冠.基于动态遮挡阈值的多视角多目标协作追踪.计算机研究与发展,2015,51(4):813-823.
    [8] 陈良银,颜秉姝,张靖宇,胡剑波,刘振磊,刘燕,徐正坤,罗谦.移动低占空比传感网邻居发现算法.软件学报,2014,25(6):1352-1368. http://www.jos.org.cn/1000-9825/4493.htm[doi:10.13328/j.cnki.jos.004493]
    [9] 卢旭,程良伦,罗世亮.无线传感器网络自适应目标跟踪节点调度算法.通信学报,2015,36(4):70-80.
    [12] 张希伟,戴海鹏,徐力杰,陈贵海.无线传感器网络中移动协助的数据收集策略.软件学报,2013,24(2):198-214. http://www.jos.org.cn/1000-9825/4349.htm[doi:10.3724/SP.J.1001.2013.04349]
    [16] 彭臻,王田,王文华,王国军,赖永炫.传感网中目标的移动式定位跟踪研究综述.中南大学学报(自然科学版),2017,48(3):701-711.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王田,梁玉珠,彭臻,彭绍亮,蔡绍滨,贾维嘉.无线传感器网络中移动目标探测跟踪研究进展.软件学报,2017,28(s1):115-128

复制
分享
文章指标
  • 点击次数:2158
  • 下载次数: 4929
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-05-15
  • 在线发布日期: 2017-12-15
文章二维码
您是第19863396位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号