基于驾驶行为和速度的车内网CAN数据防注入攻击
作者:
基金项目:

国家自然科学基金(61471084);软件架构国家重点实验室开放课题基金(SKLSAOP1602);国家高技术研究发展计划(863)(2012AA111902)


Analysis of Malicious Injection Attack on CAN Data in In-Vehicle Network Based on Driving Behavior and Velocity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由于车内网的开放性以及协议缺陷,其总线中数据的安全性及有效性分析是目前亟待解决的问题.利用车内CAN总线网络协议中车辆速度以及刹车油门等驾驶行为信息,提出了针对车内网CAN网络数据的防注入攻击模型.首先,基于攻击模型的分析与注入攻击特点,构建了基于驾驶行为-速度的结构模型.其次,基于该模型,利用朴素贝叶斯网络分类器,提出了面向车内网CAN数据防注入攻击分析模型,从而对接收到的车内网CAN协议中车辆行驶速度进行了有效性分析.最后通过实验仿真与验证,其结果表明,该方法能够有效地提高数据质量分析准确度.

    Abstract:

    Because of the opening of In-vehicle network, there are several important problems to be dealt with, such as the security and validity of data. Firstly, the article builds a construct model based on driving behavior and speed. Secondly, it makes an analysis of preventing data injection by using the construct model above and the naive Bayesian network classifier, so as to take effective measures to guarantee the vehicle security. In the end, an experimental simulation is carried out to prove that the proposed method can effectively improve the accuracy of data quality analysis and lower the false rate as well.

    参考文献
    [1] Yan C, Xu WY. Thought of the security of vehicle intelligentization. China Computer Federation, 2016,12(1):20-26(in Chinese with English abstract).
    [2] Buczak AL, Guven E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 2016,18(2):1153-1176.
    [3] Chandola V, Banerjee A, Kumar V. Anomaly detection:A survey. ACM Computing Surveys, 2009,41(3):75-79.
    [4] Muter M, Groll A, Freiling FC. A structured approach to anomaly detection for invehicle networks. In:Proc. of the 6th Int'l Conf. on Information Assurance and Security (IAS). IEEE, 2010. 92-98.
    [5] Larson UE, Nilsson DK, Jonsson E. An approach to specification-based attack detection for invehicle networks. In:Proc. of the Intelligent Vehicles Symp. IEEE, 2008. 220-228.
    [6] Kammerer R, Fromel B, Wasicek A. Enhancing security in CAN systems using a star coupling router. In:Proc. of the 7th IEEE Int'l Symp. on Industrial Embedded Systems (SIES). IEEE, 2012. 237-246.
    [7] Kang MJ, Kang JW. Intrusion detection system using deep neural network for invehicle network security. PLoS ONE, 2016, 11(6):e0155781.[doi:10.1371/journal.pone.0155781]
    [8] Mujalli RO, López G, Garach L. Bayes classifiers for imbalanced traffic accidents datasets. Accident Analysis & Prevention, 2016,88:37-51.
    [9] Tiwari D, Mallick B. SVM and naïve Bayes network traffic classification using correlation information. Int'l Journal of Computer Applications, 2016,147(3):1-5.
    [10] Gmbh RB. CAN Specification, Version2.0-1991. Stuttgart:Bosch. 1991. 1-73.
    [11] Lu CJ. The study on vehicle speed control in the long downhill[Ph.D. Thesis]. Chongqing:Chongqing Jiaotong University, 2012(in Chinese with English abstract).
    [12] Li W, Li QX. Using naïve Bayes with AdaBoost to enhance network anomaly intrusion detection. In:Proc. of the 3rd Int'l Conf. on Intelligent Networks and Intelligent Systems (ICINIS). IEEE, 2010. 486-489.
    [13] Ahirwar DK, Saxena SK, Sisodia MS. Anomaly detection by naïve Bayes & RBF network. Int'l Journal of Advanced Research in Computer Science & Electronics Engineering, 2012,1(1):22-27.
    [14] Ge J, Xia Y, Wang J. A naïve Bayesian classifier in categorical uncertain data streams. In:Proc. of the Int'l Conf. on Data Science and Advanced Analytics. IEEE, 2015. 392-398.
    [15] Park SH, Fürnkranz J. Efficient implementation of class-based decomposition schemes for naïve Bayes. Machine Learning, 2014,96(3):1-15.
    [16] Li WJ, Xiong XF, Mao YM. Classification method for interval uncertain data based on improved naïve Bayes. Journal of Computer Applications, 2014,34(11):3268-3272(in Chinese with English abstract).
    [17] Ren J, Lee SD, Chen X, et al. Naïve Bayes classification of uncertain data. In:Proc. of the IEEE Int'l Conf. on Data Mining. IEEE, 2009. 944-949.
    [18] Mukherjee S, Sharma N. Intrusion detection using naïve Bayes classifier with feature reduction. Procedia Technology, 2012,4(11):119-128.
    [19] Barot V, Chauhan SS, Patel B. Feature selection for modeling intrusion detection. Int'l Journal of Computer Network & Information Security, 2014,6(7):56-62.
    [20] Ki Y, Baik D. Model for accurate speed measurement using double-loop detectors. IEEE Trans. on Vehiclar Technology, 2006,55:1094-1101.
    附中文参考文献:[1] 闫琛,徐文渊.汽车智能化的安全思考.中国计算机学会通讯,2016,12(1):20-26.
    [11] 卢从娟.汽车长下坡速度控制研究[博士学位论文].重庆:重庆交通大学,2012.
    [16] 李文进,熊小峰,毛伊敏.基于改进朴素贝叶斯的区间不确定性数据分类方法.计算机应用,2014,34(11):3268-3272.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁男,梁文斌,许力,宋彩霞,谭国真.基于驾驶行为和速度的车内网CAN数据防注入攻击.软件学报,2017,28(s1):1-10

复制
分享
文章指标
  • 点击次数:2054
  • 下载次数: 4456
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-05-15
  • 在线发布日期: 2017-12-15
文章二维码
您是第19805089位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号