多核与众核上MNF并行算法与性能优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61272146, 41375113)


Parallelizing and Optimizing Maximum Noise Fraction Rotation on Multi-Cores and Many-Cores
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱遥感影像降维最大噪声分数变换(maximum noise fraction rotation,简称MNF rotation)方法运算量大,耗时长.基于多核CPU与众核MIC(many integrated cores)平台,研究MNF算法的并行方案和性能优化.通过热点分析,针对滤波、协方差矩阵运算和MNF变换等热点,提出相应并行方案和多种优化策略,量化分析优化效果,设计MKL(math kernel library)库函数实现方案并测评其性能;设计并实现基于多核CPU的C-MNF和基于CPU/MIC的M-MNF并行算法.实验结果显示,C-MNF算法在多核CPU取得的加速比为58.9~106.4,而基于CPU/MIC异构系统的M-MNF算法性能最好,加速比最高可达137倍.

    Abstract:

    Maximum noise fraction (MNF) rotation is a classical method of hyperspectral image dimensionality reduction, and it needs a large amount of calculation and thus is time-consuming. This paper investigates the code transplantation and performance optimization for the maximum noise fraction algorithm on multi-core CPU and many integrated core (MIC) architecture. By analyzing hotspots of the MNF algorithm, parallel schemes are first designed for filtering, covariance matrix calculating and MNF transforming. Then, a series of optimization methods are presented and validated for various parallel schemes of different hotspots, including using math kernel library (MKL) functions. Finally, a C-MNF algorithm on multi-cores CPUs and an M-MNF algorithm on the CPU/MIC heterogeneous system are constructed. Experiments show that the C-MNF algorithm achieves impressive speedups (ranging from 58.9 to 106.4), and the M-MNF parallel algorithm runs the fastest, reaching a maximum speed-up of 137X.

    参考文献
    相似文献
    引证文献
引用本文

方民权,张卫民,高畅,方建滨.多核与众核上MNF并行算法与性能优化.软件学报,2015,26(S2):247-256

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-07
  • 最后修改日期:2015-10-12
  • 录用日期:
  • 在线发布日期: 2016-01-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号