摘要:高光谱遥感影像降维最大噪声分数变换(maximum noise fraction rotation,简称MNF rotation)方法运算量大,耗时长.基于多核CPU与众核MIC(many integrated cores)平台,研究MNF算法的并行方案和性能优化.通过热点分析,针对滤波、协方差矩阵运算和MNF变换等热点,提出相应并行方案和多种优化策略,量化分析优化效果,设计MKL(math kernel library)库函数实现方案并测评其性能;设计并实现基于多核CPU的C-MNF和基于CPU/MIC的M-MNF并行算法.实验结果显示,C-MNF算法在多核CPU取得的加速比为58.9~106.4,而基于CPU/MIC异构系统的M-MNF算法性能最好,加速比最高可达137倍.