内嵌人格分析的社交关系强度层次模型及算法
作者:
基金项目:

国家自然科学基金(61076109);国家高技术研究发展计划(863)(2009AA011902)


Design of TPM Chip Based on Signal Integrity Analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    社交网络中用户关系强度计算对于个性化社交服务呈现具有重要意义.同时,心理学研究表明人格特征是影响用户关系强度的关键因素之一.基于社会心理学中人与人之间的关系产生原理,提出一种内嵌人格分析的社交关系强度层次模型及计算方法.通过社交网络行为建模,建立用户大五人格特征预测模型,实现用户人格倾向性演算.同时结合偏好相似性和交互熟悉性计算,实现嵌入人格特征的用户关系强度的求解算法.最后,本文通过构建人人网社交关系仿真实验平台,验证了该方法的合理性和有效性.

    Abstract:

    It is important for personalized social services to calculate the relationship strength between users in a social network. Meanwhile, the psychological studies has shown that the personality traits is one of the key factors affecting the user's relationship strength. Based on the relationship generation principle in the social psychology, this paper proposes a personality embedded social relationship strength hierarchical model and algorithm. With the analysis of a user's behavior in social network, this paper predicts the Big Five personality traits of the user to calculate the propensity of personality. The propensity of personality is combined with the similarity of preference and the familiarity of interaction to formalize the personality embedded user relationship strength calculation. At the end of this paper, the proposed algorithm is demonstrated to be reasonable and effective in a simulation experiment of RENREN social network.

    参考文献
    [1] Liu F, Lee HJ. Use of social network information to enhance collaborative filtering performance. Expert Systems with Applications, 2010,37(7):4772-4778.
    [2] Singla P, Richardson M. Yes, there is a correlation from social networks to personal behavior on the Web. In: Proc. of the 17th Int'l Conf. on World Wide Web. 2008.
    [3] Gilbert E, Karahalios K. Predicting tie strength with social media. In: Proc. of the 27th Int'l Conf. on Human Factors in Computing Systems. 2009.
    [4] Xiang R, Neville J, Rogati M. Modeling relationship strength in online social networks. In: Proc. of the 19th Int'l Conf. on World Wide Web. 2010.
    [5] Backstrom L, Huttenlocher D, Kleinberg J, Lan XY. Group formation in large social networks: Membership, growth, and evolution. In: Proc. of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2006.
    [6] Lauw H, Shafer C, Agrawal R, Ntoulas A. Homophily in the digital World: A LiveJournal case study. Internet Computing, 2010,14(2):15-23.
    [7] Jr. Costa PT, Mccrae RR. NEO Personality Inventory-Revised. SAGE Publications, 2005.
    [8] Anderson C, John OP, Keltner D, Kring M. Who attains social status? Effects of personality and physical attractiveness in social groups. Personality and Social Psychology, 2001.
    [9] Jensen-Campbell LA, Graziano WG. Agreeableness as a moderator of interpersonal conflict. Personality and Social Psychology, 2004.
    [10] Golbeck J, Robles C, Turner K. Predicting personality with social media. In: Proc. of the 2011 Annual Conf. Extended Abstracts on Human Factors In Computing Systems. Vancouver, 2011.
    [11] Quercia D, Lambiotte R, Stillwell D, Kosinski M, Crowcroft J. The personality of popular facebook users. In: Proc. of the ACM 2012 Conf. on Computer Supported Cooperative Work. 2012.
    [12] Selfhout M, Burk W, Branje S, Denissen J, van Aken M, Meeus W. Emerging late adolescent friendship networks and big five personality traits: A social network approach. Journal of Personality, 2010,78(2):509-538.
    [13] Asendorpf BJ, Wilpers S. Personality effects on social relationships. Journal of Personality and Social Psychology, 1998,74(6): 1531-1544.
    [14] Lu YB, Zhao L, Wang B. From virtual community members to C2C e-commerce buyers: Trust in virtual communities and its effect on consumers' purchase intention. Electronic Commerce Research and Applications, 2010, 346-360.
    [15] 乔秀全,杨春,李晓峰,陈俊亮.社会网络服务中一种基于用户上下文的信任度计算方法.计算机学报,2011,34(12).
    [16] Manning D, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge University Press, 2008.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李艳兵,叶剑,朱珍民.内嵌人格分析的社交关系强度层次模型及算法.软件学报,2014,25(S2):44-52

复制
分享
文章指标
  • 点击次数:2826
  • 下载次数: 5387
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-06-15
  • 最后修改日期:2013-08-21
  • 在线发布日期: 2015-01-29
文章二维码
您是第19863458位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号