在频域上利用三维轨迹匹配进行手语识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61001193);微软亚洲研究院项目


Sign Language Recognition by 3D Trajectory Matching in Frequency Domain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    手语是聋哑人互相之间常用的交流手段.但由于大部分口语使用者不懂手语, 因此影响了聋哑人参加正常的社交活动.因此,提出了一种利用简单的三维轨迹信息进行小规模手语词汇识别的方法,试图帮助聋哑人克服部分交流障碍.首先,对Kinect获取的三维轨迹进行预处理——对获得的三维轨迹根据打手语人的身高进行归一化,然后使用插值算法对轨迹进行均匀的指定点数的重采样.在进行匹配之前,测试集和原型图像集中的轨迹将会对齐,并使用DFT变换到频域空间,得到由实部、虚部、幅值串接而成的新的特征向量.最后,在频域中计算两条轨迹之间的欧氏距离以评估两条三维轨迹的相似度.对239个手语词汇集合的实验结果表明,该方法对于中国手语的孤立词识别是有效的.

    Abstract:

    For hearing-impaired people, sign language is a common communication means just like spoken language to ordinary people. Because most of ordinary people cannot understand sign language, it's difficult for hearing-impaired community to participate in social activities. This paper proposes an effective method for sign language recognition with simple 3D trajectory information to break down the barriers between hearing-impaired and normal persons. First of all, the 3D trajectory captured from Kinect is preprocessed, and both the trajectories from the probe and galleries is normalized by the size of the signer. Then the trajectories are resampled evenly by a fast, easy, and usable interpolation algorithm. Before matching of two curves, the trajectory of the probe is aligned to the gallery trajectory and both aligned trajectories are transferred into frequency domain by DFT, and vectors linking the real part, imaginary part and amplitude are obtained. Finally, Euclidean distance between two trajectories in frequency domain is calculated to evaluate the dis-similarity of two trajectory vectors according to the minimized distance. The experimental results on a data set of 239 sign words show that the presented approach is effective to recognizing isolated words of Chinese sign language.

    参考文献
    相似文献
    引证文献
引用本文

林宇舜,柴秀娟,许志浩,尹芳,陈熙霖.在频域上利用三维轨迹匹配进行手语识别.软件学报,2014,25(S2):36-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-15
  • 最后修改日期:2013-08-21
  • 录用日期:
  • 在线发布日期: 2015-01-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号