基于采样滤波的信号矢量分解移动定位算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61271125);河北省自然科学基金(F2013205084);河北省教育厅基金项目(Q2012124)


Signal Strength Resolution for Dynamic Localization Based on Sampling and Filtering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以接收信号强度(received signal strength,简称RSS)的测距技术为基础,借助移动传感器网络(MSN)中MCL类粒子滤波定位算法的采样、过滤方法,并融入物理中力的分解和合成的思想,提出了一种信号矢量分解的采样滤波移动节点定位算法.该算法通过建立直角坐标系,分解合成移动节点、样本点与信标节点间的信号矢量,利用误差圆环采样,比较移动节点与样本点的信号合矢量进行滤波,将合矢量模差绝对值最小的样本点坐标的均值作为移动节点的坐标.仿真结果表明,在同样的实验条件下,该算法的定位精度明显高于相比较的其他算法,且该算法不需要添加额外的硬件设备.

    Abstract:

    Based on the received signal strength (RSS) range measurement technology, and by utilizing the sampling and filtering approach of MCL-kind particle filtering localization algorithms in mobile sensor networks (MSN), a kind of signal strength resolution for dynamic localization based on sampling and filtering (SSR-SF) which integrates with the principle of strength resolution and composition in physics is proposed. In the produced rectangular coordinates, SSR-SF resolves the resultants the signal vectors between mobile node, beacon nodes, and samples and beacon nodes respectively. It samples from an error annulus, compares the signal resultant vectors of the samples with that of the mobile node, and then picks out the final samples whose resultant vectors' mood are closest to that of the mobile node. SSR-SF takes the average value of those final samples' coordinates as the mobile node's location. Simulation results show that, under the same experiment conditions, the localization accuracy of SSR-SF is clearly higher than its counterparts and it needs no additional hardware.

    参考文献
    相似文献
    引证文献
引用本文

张双,李晶,陈嘉兴,刘志华.基于采样滤波的信号矢量分解移动定位算法.软件学报,2014,25(s1):66-74

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-05-10
  • 最后修改日期:2014-08-26
  • 录用日期:
  • 在线发布日期: 2014-11-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号