基于SMDP 的动态云计算资源优化管理系统
作者:
基金项目:

国家重点基础研究发展计划(973)(2011CB302902, 2012CB316100); 国家科技重大专项(2010ZX03006-001-01); 中国科学院先导专项课题(XDA06040100);


Dynamic Cloud Resources Allocation Based on SMDP
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着移动云计算方式正在逐步替代传统的Client-Server 方式,在移动云计算网络中,如何有效地分配云计算资源来尽量满足移动终端对云计算服务的需求,同时使得移动云计算网络的云计算资源利用率和系统收益最大,就成为当前云计算领域中一个重要的研究课题.首先提出了一种基于半马氏决策过程(SMDP)的移动云计算服务域动态云计算资源优化管理模型,通过该模型获得的云计算资源优化管理决策策略不仅能使移动云计算服务域的系统收益最大,同时也能提高云计算资源的利用率以及移动终端的用户满意度和服务质量(QoS),并能反映由于移动终端的服务请求到达移动云计算网络以及移动终端结束服务离开移动云计算网络而引起的云计算资源动态变化的真实情况.最后对提出的移动云计算服务域动态云计算资源优化管理模型的性能通过仿真进行了验证,实验仿真结果验证了理论分析的正确性.

    Abstract:

    With mobile cloud computing system architecture gradually replacing the traditional Client-Server model, one of the most critical issues that needs to be addressed is the resource allocation deciding problem to resolve how a cloud could efficiently handle the cloud resources to satisfy the requirements of mobile device for cloud services. Simoultaneously, this is in effort to obtain the maximal utilization rate of cloud resources and system rewards of cloud. The study first proposes a novel cloud computing resource allocation model based on semi-Markov decision process (SMDP) to achieve the optimal resource allocation scheme in terms of maximal system reward, cloud resource utilization, and the QoS of mobile device while capturing the dynamics of resource request arrivals and departures. Finally, the performance of the proposed model is evaluated by the simulation results, which show that the obtained theoretic results are consistent with this simulation results.

    参考文献
    [1] Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, et al. Above the clouds: ABerkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley, 2009.
    [2] Walshy M. Gartner: Mobile to outpace desktop Web by 2013.
    [3] Li XH, Zhang H, Zhang YF. Deploying mobile computation in cloud service. In: Proc. of the 1st Int’l Conf. for Cloud Computing(CloudCom). 2009. 301.
    [4] Chun B, Maniatis P. Augmented smartphone applications through clone cloud execution. In: Proc. of the USENIX HotOS XII.2009.
    [5] Zhang X, Schiffman J, Gibbs S, Kunjithapatham A, Jeong S. Securing elastic applications on mobile devices for cloud computing.In: Proc. of the 2009 ACM Workshop on Cloud Computing Security. 2009. 127-134.
    [6] Huang D, Zhang X, Kang M, Luo J. Mobicloud: A secure mobile cloud framework for pervasive mobile computing andcommunication. In: Proc. of the 5th IEEE Int’l Symp. on Service-Oriented System Engineering. 2010.
    [7] Meng X, Pappas V, Zhang L. Improving the scalability of data center networks with trafficaware virtual machine placement. In:Proc. of the IEEE INFOCOM. 2010.
    [8] Cai LX, Cai L, Shen X, Mark JW. Resource management and QoS provisioning for IPTV over mmWave-based WPANs withdirectional antenna. ACM Mobile Networks and Applications (MONET), 2009,14(2):210-219.
    [9] Cheng HT, Zhuang W. Novel packet-level resource allocation with effective QoS provisioning for wireless mesh networks. IEEETrans. on Wireless Communications, 2009,8(2):694-700.
    [10] Cai LX, Shen X, Mark JW. Efficient MAC protocol for ultrawideband networks. IEEE Communications Magazine, 2009,47(6):179-185.
    [11] Liang H, Huang D, Peng D. On economic mobile cloud computing model. In: Proc. of the Int’l Workshop on Mobile Computingand Clouds (MobiCloud in conjunction with MobiCASE). 2010.
    [12] Wei G, Vasilakos AV, Zheng Y, Xiong N. A game-theoretic method of fair resource allocation for cloud computing services. 2009.
    [13] Lorincz K, Chen BR, Waterman J, Werner-Allen G, Welsh M. Resource aware programming in the pixie OS. In: Proc. of theSenSys 2008. 2008.
    [14] Lorincz K, Chen B., Waterman J, Werner-Allen G, Welsh M. A stratified approach for supporting high throughput event processingapplications. In: Proc. of the DEBS 2009. 2009.
    [15] Tesauro G, Jong NK, Das R, Bennani MN. A hybrid reinforcement learning approach to autonomic resource allocation. In: Proc. ofthe ICAC 2006. 2006.
    [16] Boloor K, Chirkova R, Viniotis R, Salo T. Dynamic request allocation and scheduling for context aware applications subject to apercentile response time sla in a distributed cloud. In: Proc. of the 2nd IEEE Int’l Conf. on Cloud Computing Technology andScience. 2010.
    [17] Lee JW, Mazumdar RR, Shroff NB. Non-Convex optimization and rate control for multi-class services in the Internet. IEEE/ACMTrans. on Networking, 2005,13(4):827-840.
    [18] Mine H, Osaki S, Puterman ML. Markovian Decision Process, Amsterdam: Elsevier, 1970.
    [19] Puterman ML. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, 2005.
    [20] Cui YF, Wang S, Li Y, Dong KW. Cloud computing resource management research based on multi-level hierarchical controlstructure. Journal of Academy of Equipment Command & Technolgy, 2010,21(2) (in Chinese with English abstract).
    [21] Yuan WC, Zhu YA, Lu W. Exploring virtualized resource management mechanism for cloud computing. Journal of NorthwesternPolytechnical University, 2010,28(5) (in Chinese with English abstract).
    [22] Jiang Q, Xi HS, Yin BQ. An online adaptive bandwidth allocation optimization algorithm for wireless multimedia communicationnetworks. Journal of Software, 2007,18(6):1491-1500 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/1491.htm [doi: 10.1360/jos181491]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁宏斌,彭代渊,刘燕.基于SMDP 的动态云计算资源优化管理系统.软件学报,2012,23(zk1):25-37

复制
分享
文章指标
  • 点击次数:4370
  • 下载次数: 6594
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-05-05
  • 最后修改日期:2012-08-11
  • 在线发布日期: 2012-10-11
文章二维码
您是第19863624位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号