基于蓝牙动态特征的移动情境感知
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61173066, 61070110); 北京市自然科学基金(4112056); 北京市教育委员会共建项目


Sensing Surrounding Contexts using Dynamic Bluetooth Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的情境感知系统多基于定位技术,以识别出重要的地点,但无法直观地描述用户所处的动态语义情境.提出了一种仅仅基于环境中动态蓝牙信息即可对情境进行准确感知的方法,即通过观察周围蓝牙设备的出现规律,提取多维动态特性,用以建立短时情境分类模型,并进一步将此模型运用到分析连续蓝牙轨迹,推断真实生活中的长时语义情境.针对实际环境中的6 种典型情境的实验,其结果表明,仅基于动态蓝牙信息,提取的动态情景特征能够有效体现各类移动情景特点,且情景决策树模型对于短时情景的平均识别准确率可达86.8%,优于传统的其他几种模型方法.同时,基于短时情景的识别结果,综合推断出用户所处的长时间情境,其正确率可达92%.

    Abstract:

    Traditional context-aware systems on mobile platform mainly focus on utilizing various localization based technologies to detect and recognize significantly meaningful places. However, they cannot intuitively describe the dynamic semantic context of the surroundings. In this paper, a novel context sensing approach is proposed to distinguish typical context based on dynamic Bluetooth information. The study builts a context classification model through observing the occurrence of ambient Bluetooth devices and dynamic statistical features extraction and further applied the model into inferring semantic social context based on Bluetooth traces from real-world personal lives. Evaluation results show, just based on dynamic Bluetooth information, the proposed feature extraction methods and DT (Decision Tree) can achieve an average accuracy of 86.8% for recognizing six representative short time-length contexts, which outperforms several traditional machine learning methods. In addition, the accuracy of long time-length context inferring can also reach 92% without any additional information but Bluetooth.

    参考文献
    相似文献
    引证文献
引用本文

陈益强,李秋实,刘军发,胡琨,陈振宇.基于蓝牙动态特征的移动情境感知.软件学报,2011,22(zk2):137-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-07-20
  • 最后修改日期:2011-12-01
  • 录用日期:
  • 在线发布日期: 2012-03-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号