面向小样本的恶意软件检测综述
作者:
作者单位:

作者简介:

刘昊(1996-), 男, 博士生, 主要研究领域为网络空间安全, 恶意软件检测, 机器学习;田志宏(1978-), 男, 博士, 教授, 博士生导师, CCF杰出会员, 主要研究领域为网络攻防对抗, 网络靶场, 主动实时防护;仇晶(1983-), 女, 博士, 教授, 博士生导师, CCF杰出会员, 主要研究领域为网络空间安全威胁感知领域基础理论, 先进智能算法设计;刘园(1986-), 女, 博士, 教授, 博士生导师, CCF杰出会员, 主要研究领域为网络安全, 机制设计, 博弈理论;方滨兴(1960-), 男, 博士, 教授, 博士生导师, 主要研究领域为计算机网络, 信息安全.

通讯作者:

田志宏, E-mail: tianzhihong@gzhu.edu.cn

中图分类号:

基金项目:

国家自然科学基金(U20B2046); 国家重点研发计划(2021YFB2012402); 广东省高校创新团队项目(2020KCXTD007); 广州市高校创新团队项目(202032854)


Survey on Few-shot for Malware Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    恶意软件检测是网络空间安全研究中的热点问题, 例如Windows恶意软件检测和安卓恶意软件检测等. 随着机器学习和深度学习的发展, 一些在图像识别、自然语言处理领域的杰出算法被应用到恶意软件检测, 这些算法在大量数据下表现出了优异的学习性能. 但是, 恶意软件检测中有一些具有挑战性的问题仍然没有被有效解决, 例如, 基于少量新颖类型的恶意软件, 常规的学习方法无法实现有效检测. 因此, 小样本学习(few-shot learning, FSL)被用于解决面向小样本的恶意软件检测(few-shot for malware detection, FSMD)问题. 通过相关文献, 提取出FSMD的问题定义和一般流程. 根据方法原理, 将FSMD方法分为: 基于数据增强的方法、基于元学习的方法和多技术结合的混合方法, 并讨论每类FSMD方法的特点. 最后, 提出对FSMD的背景、技术和应用的展望.

    Abstract:

    Malware detection is a hotspot of cyberspace security research, such as Windows malware detection and Android malware detection. With the development of machine learning and deep learning, some outstanding algorithms in the fields of image recognition and natural language processing have been applied to malware detection. These algorithms have shown excellent learning performance with a large amount of data. However, there are some challenging problems in malware detection that have not been solved effectively. For instance, conventional learning methods cannot achieve effective detection based on a few novel malware. Therefore, few-shot learning (FSL) is adopted to solve the few-shot for malware detection (FSMD) problems. This study extracts the problem definition and the general process of FSMD by the related research. According to the principle of the method, FSMD methods are divided into methods based on data augmentation, methods based on meta-learning, and hybrid methods combining multiple technologies. Then, the study discusses the characteristics of each FSMD method. Finally, the background, technology, and application prospects of FSMD are proposed.

    参考文献
    相似文献
    引证文献
引用本文

刘昊,田志宏,仇晶,刘园,方滨兴.面向小样本的恶意软件检测综述.软件学报,2024,35(8):3785-3808

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-11
  • 最后修改日期:2023-07-17
  • 录用日期:
  • 在线发布日期: 2024-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号