摘要:近年来,深度学习在图像隐写分析任务中表现出了优越的性能.目前,大多数基于深度学习的图像隐写分析模型为专用型隐写分析模型,只适用于特定的某种隐写术.使用专用隐写分析模型对其他隐写算法的隐写图像进行检测,则需要该隐写算法的大量载密图像作为数据集对模型进行重新训练.但在实际的通用隐写分析任务中,隐写算法的大量载密图像数据集是难以得到的.如何在极少隐写图像样本的情况下训练通用隐写分析模型是一个极大的挑战.对此,受少样本学习领域研究成果的启发,提出了基于转导传播网络的通用隐写分析方法.首先,在已有的少样本学习分类框架上改进了特征提取部分,设计了多尺度特征融合网络,使少样本分类模型能够提取到更多的隐写分析特征,使其可用于基于秘密噪声残差等弱信息的分类任务;其次,针对少样本隐写分析模型难收敛的问题,提出了预训练初始化的方式得到具有先验知识的初始模型;然后,分别训练了频域和空域的少样本通用隐写分析模型,通过自测和交叉测试,结果表明,检测平均准确率在80%以上;接着,在此基础上,采用数据集增强的方式重新训练了频域、空域少样本通用隐写分析模型,使少样本通用隐写分析模型检测准确率与之前相比提高到87%以上;最后,将得到的少样本通用隐写分析模型分别与现有的频域和空域隐写分析模型的检测性能进行比较,结果显示,空域上少样本通用隐写分析模型在常用的少样本环境下的检测准确率稍低于SRNet和ZhuNet,频域上少样本通用隐写分析模型在常见的少样本环境下的检测准确率已超越现有的频域隐写分析模型.实验结果表明,基于少样本学习的通用隐写分析方法对未知隐写算法的检测具有高效性和鲁棒性.