摘要:提出了一个基于多样性分类和距离回归的进化算法(DCDREA),以解决昂贵超多目标优化问题(MaOPs).DCDREA采用随机森林(RF)作为全局分类代理模型,它把种群中所有解作为训练样本,并根据是否为最小相关解,把训练样本分类为正负样本,使模型学习到训练样本中含有的分类标准.全局分类代理模型主要用来筛选新产生的候选解,以得到一组有希望的候选解.此外,它采用Kriging作为局部回归代理模型,其选择种群中距离当前候选解最近的解作为训练样本,拟合训练样本与理想点的距离.然后,通过K-means方法把候选解划分为μ个簇,并从每个簇中选择一个用于真实评估的候选解.在实验部分,使用大规模3、4、6、8、10目标的DTLZ测试问题集,把DCDREA与目前流行的代理辅助进化算法进行对比实验.对于不同测试问题,每个算法独立运行20次,然后统计反向迭代距离(IGD)和算法运行时间.最后,使用秩和检验来分析结果.实验对比结果表明,DCDREA在大多数情况下表现更好.由此可见,DCDREA具有较好的有效性和可行性.