可靠性模型中故障检测率研究述评
作者:
作者单位:

作者简介:

张策(1978-),男,博士,副教授,CCF专业会员,主要研究领域为软件测试,软件可靠性建模与评估,容错计算,可信计算;王金勇(1974-),男,博士,副教授,主要研究领域为软件可靠性;刘宏伟(1971-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为计算机体系结构,容错计算机设计方法,云计算系统资源分配与优化,云计算系统评测技术与理论,软件可靠性建模;吕为工(1967-),男,副教授,主要研究领域为物联网,嵌入式系统,分布式人工智能;白睿(1999-),女,学士,主要研究领域为软件可靠性建模与评测;孟凡超(1974-),男,博士,副教授,CCF高级会员,主要研究领域为服务计算,云计算,软件工程,软件体系结构;王瞰宇(1999-),男,学士,主要研究领域为分布计算,可信计算与信息安全.

通讯作者:

张策,E-mail:zhangce@hitwh.edu.cn

中图分类号:

基金项目:

国家科技支撑计划(2014BAF07B02);国家自然科学基金(61473097);山东省重点研发计划(GG201703130116,GG201703040002);威海市科技发展计划(ITEAZMZ001807);山西省基础研究计划(201801D121120)


Review on Fault Detection Rate in Reliability Model
Author:
Affiliation:

Fund Project:

National Science and Technology Support Program (2014BAF07B02); National Natural Science Foundation of China (61473097); Key R&D Program Project in Shandong Province (GG201703130116, GG201703040002); Weihai Science and Technology Development Plan Project (ITEAZMZ001807); Basic research plan of Shanxi Province (201801D121120)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    故障检测率FDR(fault detection rate)是可靠性研究的关键要素,对于测试环境构建、故障检测效率提升、可靠性建模和可靠性增长具有重要作用,对于提高系统可靠性与确定发布时间具有重要现实意义.首先,对基于NHPP(non-homogeneous poisson process,非齐次泊松过程)类的软件可靠性增长模型SRGM(software reliability growth mode)进行概述,给出了建模本质、功用与流程.基于此,引出可靠性建模与研究中的关键参数——FDR,给出定义,对测试环境描述能力进行分析,展示不同模型的差异.着重剖析了FDR与失效强度、冒险率(风险率)的区别,得出三者之间的关联性表述.全面梳理了FDR的大类模型,分别从测试覆盖函数视角、直接设定角度、测试工作量函数参与构成方式这3个方面进行剖析,继而提出统一的FDR相关的可靠性模型.考虑到对真实测试环境描述能力的需要,建立不完美排错框架模型,衍生出不完美排错下多个不同FDR参与的可靠性增长模型.进一步,在12个真实描述应用场景与公开发表的失效数据集上进行实验,验证不同FDR模型相关的可靠性模型效用,对差异性进行分析与讨论.结果表明,FDR模型自身的性能可以支撑可靠性模型性能的提升.最后,指出了未来研究趋势和需要解决的问题.

    Abstract:

    FDR (fault detection rate), as the key element of reliability research, has great importance in constructing the test environment, improving fault detection efficiency, and modeling and improving reliability. Meantime, it has important practical significance for improving system reliability and determining release time. First, the software reliability growth model SRGM (software reliability growth mode) based on NHPP (non-homogeneous poisson process) is summarized, and the essence, function, and process of modeling are given. Second, based on this, FDR, the key parameter in reliability modeling and researching, is derived, and the definition of it is given. The test environment description ability is analyzed and differences of different models are shown. Third, emphasis is placed on the difference among FDR, failure strength, and hazard rate (risk rate), and then the correlation among the three is derived. Next, the general model of FDR is comprehensively analyzed from three perspectives of test coverage function, FDR set directly, and FDR constituted by testing effort function. Then a unified FDR-related reliability model is proposed. Considering the ability to describe the real test environment, the imperfect debugging framework model is established, and the reliability growth model of multiple different FDRs under imperfect debugging is derived. Further, experiments are carried out on 12 publicly available failure data sets describing real application scenarios to verify the effectiveness of reliability models related to different FDR models, and to analyze and discuss the differences. The results show that the performance of the FDR model can support the performance improvement of the reliability model. Finally, the trend of researches and the problems to be solved are pointed out.

    参考文献
    相似文献
    引证文献
引用本文

张策,刘宏伟,白睿,王瞰宇,王金勇,吕为工,孟凡超.可靠性模型中故障检测率研究述评.软件学报,2020,31(9):2802-2825

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-05
  • 最后修改日期:2020-02-07
  • 录用日期:
  • 在线发布日期: 2020-05-26
  • 出版日期: 2020-09-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号