数轴上保密关系测定协议
作者:
作者单位:

作者简介:

巩林明(1979-),男,博士,讲师,主要研究领域为密码学,信息安全.
李顺东(1963-),男,博士,教授,博士生导师,主要研究领域为公钥密码,安全多方计算.
邵连合(1988-),男,博士,副教授,CCF专业会员,主要研究领域为量子信息及量子信息安全.
薛涛(1973-),男,博士,教授,CCF专业会员,主要研究领域为分布式计算,云计算安全,大数据安全.
王道顺(1964-),男,博士,副教授,博士生导师,主要研究领域为公钥密码,视觉密码.

通讯作者:

巩林明,E-mail:glmxinjing@163.com;李顺东,E-mail:shundong@snnu.edu.cn;王道顺,E-mail:daoshun@tsinghua.edu.cn

中图分类号:

基金项目:

西安工程大学博士科研启动基金(107020331);陕西省教育厅重点科学研究计划(20JS052);陕西省2020年技术创新引导专项计划(2020CGXNG-012);国家自然科学基金(61972225)


Protocols for Secure Test on Relationship on Number Axis
Author:
Affiliation:

Fund Project:

Research Fund for the Doctoral Program of Xi'an Polytechnic University (107020331); Key Scientific Research Program Project of Department of Education of Shaanxi Province (20JS052); Special Plan for Technological and Innovation Guidance of Shaanxi Province in 2020 (2020CGXNG-012); National Natural Science Foundation of China (61972225)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近些年来,安全多方计算一直是信息安全领域的热点问题之一,已经成为分布式网络用户在协同计算中用于隐私保护的关键技术.信息安全学者已经提出若干安全多方计算问题的解决方案,但更多的安全多方计算问题还有待研究.研究数轴上的保密关系测定问题,着重探讨3个子问题:(1)面向有理数的点(或数)与区间保密关系测定问题;(2)面向有理数的多维点与区间保密关系测定问题;(3)面向有理数的区间与区间保密关系测定问题.数轴上的保密关系测定问题在隐私保护领域有着广泛的应用,可以作为基础模块用于构造其他安全多方计算协议.基于由加密方计算(或选取)加密底数的Paillier变体同态加密方案,设计了3个数轴上的保密关系测定协议:面向有理数的数与区间保密关系测定协议、面向有理数的多维点与区间保密关系测定协议以及面向有理数的区间与区间保密关系测定协议.并在标准模型下,采用模拟范例(ideal/real)分析了3个协议的安全性.这3个协议中的保密比值计算思想直接可以用于解决有理数范围内的百万富翁问题.更广泛地,这3个协议还可以作为基础模块用于解决保密点与圆环区域关系判定问题、点与凸多边型位置关系判定问题、保密近感探测问题等安全多方计算问题.

    Abstract:

    In recent years, secure multiparty computation (SMC) is one of research focuses in the field of information security, and a key technology of privacy protecting for distributed users in their jointly evaluating. Researchers have proposed many schemes for SMC problem, however, there are many other secure multi-computation problems needed to be investigated. This study involves private relationship test on number axis, which covers three subproblems: (1) secure test on the relationship between a confidential number and a private interval; (2) multi-dimensional secure test on the relationship between multi-number and multi-interval; (3) secure test on the relationship between two confidential intervals. Private relationship test on number axis has an extensive application in the field of privacy protection, and it can be employed as a basic block to construct other SMC protocols. Based on a variant encryption scheme of Paillier’s homomorphic encryption (in which, who encrypts message who evaluates the base), three protocols for private relationship test on number axis are designed. They are secure test on the relationship between a confidential number and a private interval, multi-dimension secure test on the relationship between multi-number and multi-interval, and secure test on the relationship between two confidential intervals. And their security is analyzed using simulation framework (idea/real) in the standard model. The idea of private ratio calculation in these three protocols can be directly used to solve the millionaire problem within the range of rational numbers. More widely, these three protocols can be employed as a basic block to solve the following SMC problems: private test on relationship between a point and an annulus, private test on relationship between a point and a convex polygon, and private proximity test.

    参考文献
    相似文献
    引证文献
引用本文

巩林明,李顺东,邵连合,薛涛,王道顺.数轴上保密关系测定协议.软件学报,2020,31(12):3950-3967

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-21
  • 最后修改日期:2018-11-16
  • 录用日期:
  • 在线发布日期: 2020-12-03
  • 出版日期: 2020-12-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号