引入多级扰动的混合型粒子群优化算法
作者:
作者单位:

作者简介:

徐利锋(1983-),男,浙江临安人,博士,讲师,CCF专业会员,主要研究领域为虚拟仿真,优化算法,生物数据分析;黄祖胜(1994-),男,学士,主要研究领域为优化算法,植物虚拟模型;杨中柱(1992-),男,学士,主要研究领域为虚拟可视化建模,优化算法;丁维龙(1973-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为虚拟仿真,优化算法与智能系统.

通讯作者:

丁维龙,E-mail:wlding@zjut.edu.cn

中图分类号:

基金项目:

国家自然科学基金(31301230,61571400,31471416);浙江省自然科学基金(LY18C130012)


Mixed Particle Swarm Optimization Algorithm with Multistage Disturbances
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (31301230, 61571400, 31471416); Natural Science Foundation of Zhejiang Provinc (LY18C130012)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决粒子群优化算法易陷入局部最优值的问题,提出一种引入多级扰动的混合型粒子群优化算法.该算法结合两种经典改进粒子群优化算法的优点,即带惯性参数的标准粒子群优化算法和带收缩因子的粒子群优化算法,在此基础上,引入多级扰动机制:在更新粒子位置时,引入一级扰动,使粒子对解空间的遍历能力得到加强;若优化过程陷入“局部最优”的情况,则引入二级扰动,使得优化过程继续,从而摆脱局部最优值.使用了6个测试函数——Sphere函数、Ackley函数、Rastrigin函数、Styblinski-Tang函数、Duadric函数及Rosenbrock函数来对所提出的混合型粒子群优化算法进行仿真运算和对比验证.模拟运算的结果表明:所提出的混合型粒子群优化算法在对测试函数进行仿真时,其收敛精度和收敛速度都优于另外两种经典的改进粒子群优化算法;另外,在处理多峰函数时,本算法不易被局部最优值所限制.

    Abstract:

    To avoid the locally optimum which is frequently be the result of a calculation of particle swarm optimization (PSO) algorithm, it is proposed in this study a new mixed PSO algorithm with multistage disturbance (MPSO). MPSO combined features from two former classic improved PSO algorithms, which are standard particle swarm optimization (SPSO) and standard particle swarm optimization with a constriction factor (PSOCF). Furthermore, a strategy with multistage disturbances was also introduced into the algorithm:The first-level disturbance was used to enhance the ability of the particles to traverse the solution space when renewing the positions, while the second-level disturbance would be introduced when locally optimal solution was received to continue the optimization process. Six test functions, namely the Sphere, Ackley, Rastrigin, Styblinski-Tang, Duadric, and Rosenbrock functions, were used to simulate the optimization calculation, and the results from proposed algorithm MPSO were compared with those from SPSO and PSOCF. The results show that for the test functions, MPSO can get the optimal value much more quickly and easily than the other two algorithms, and the convergence precision of MPSO was significantly higher than the others. It can be concluded that MPSO can get over the problem of locally optimal solution when dealing with multimodal functions.

    参考文献
    相似文献
    引证文献
引用本文

徐利锋,黄祖胜,杨中柱,丁维龙.引入多级扰动的混合型粒子群优化算法.软件学报,2019,30(6):1835-1852

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-11-04
  • 最后修改日期:2018-04-12
  • 录用日期:
  • 在线发布日期: 2019-06-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号