一种面向中小规模数据集的模糊分类方法
作者:
作者单位:

作者简介:

周塔(1980-),男,江苏盐城人,博士,讲师,主要研究领域为模式识别,数据挖掘;邓赵红(1981-),男,博士,教授,博士生导师,CCF杰出会员,主要研究领域为模式识别,数据挖掘;蒋亦樟(1988-),男,博士,副教授,CCF高级会员,主要研究领域为模式识别,系统建模;王士同(1964-),男,教授,博士生导师,CCF专业会员,主要研究领域为模式识别,人工智能.

通讯作者:

周塔,E-mail:jkdzhout@just.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金(61772239,61702225,61572236,61711540041)


Fuzzy Classification Method for Small- and Medium-scale Datasets
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61772239, 61702225, 61572236, 61711540041)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    虽然Takagi-Sugeno-Kang (TSK)模糊分类器在一些重要场合已经取得了广泛应用,但如何提高其分类性能和增强其可解释性,仍然是目前的研究热点.提出一种随机划分与组合特征且规则具有高可解释性的深度TSK模糊分类器(RCC-DTSK-C),但和其他分类器构造不同的是:(1) RCC-DTSK-C由很多基训练单元构成,这些基训练单元可以被独立训练;(2)每一个基训练单元的隐含层通过模糊规则的可解释性来表达,而这些模糊规则又是通过随机划分、随机组合来进行特征选择的;(3)基于栈式结构理论,源数据集作为相同的输入空间被映射到每一个独立的基训练单元中,这样就有效地保证了源数据的所有特征在每一个独立的训练单元中都得以保留.实验结果表明,RCC-DTSK-C具有良好的分类性能和可解释性.

    Abstract:

    Although Takagi-Sugeno-Kang (TSK) is widely used in practically every profession, how to enhance its classification accuracy and interpretability is still a research focus. In this study, a deep TSK fuzzy classifier is proposed. This classifier (i.e., RCC-DTSK-C) can randomly select features and combine features and own triplely concise interpretability for fuzzy rules. There are several other varieties of RCC-DTSK-C such as reasonable structure for rule representation, namely, (1) the proposed RCC-DTSK-C consists of many base-training units and each base-training unit can be trained independently. According to the principle of stacked generalization, the input of the next base-training unit consists of the training set and random result obtained from random projections about prediction results of current base-training unit. (2) In RCC-DTSK-C, the hidden layer of each base-training unit is represented by triplely concise interpretable fuzzy rules which are in the sense of randomly selected features. These features are selected by dividing into the not-fixed several fuzzy partitions and randomly combining rules and keeping the same input space in every base-training unit. (3) The source data set is mapped into each of the independent base-training units as the same input space, which effectively ensures that all the features of the source data are preserved in each separate training unit. The extensive experimental results show RCC-DTSK-C can achieve the enhanced classification performance and triplely concise interpretability for fuzzy rules.

    参考文献
    相似文献
    引证文献
引用本文

周塔,邓赵红,蒋亦樟,王士同.一种面向中小规模数据集的模糊分类方法.软件学报,2019,30(12):3637-3650

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-17
  • 最后修改日期:2018-04-16
  • 录用日期:
  • 在线发布日期: 2019-01-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号