社交网络下的不确定图隐私保护算法
作者:
作者单位:

作者简介:

吴振强(1968-),男,陕西商洛人,博士,教授,博士生导师,CCF高级会员,主要研究领域为网络科学,网络安全,隐私保护;史武超(1991-),男,硕士,主要研究领域为隐私保护;胡静(1993-),女,硕士,主要研究领域为隐私保护;颜军(1974-),男,博士,讲师,主要研究领域为网络数据科学,隐私保护;田堉攀(1994-),女,硕士,主要研究领域为隐私保护.

通讯作者:

吴振强,E-mail:zqiangwu@snnu.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61602290,61173190);中央高校基本科研业务费专项资金(GK201704017,GK201501008)


Privacy Preserving Algorithms of Uncertain Graphs in Social Networks
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61602290, 61173190); Fundamental Research Funds for the Central Universities (GK201704017, GK201501008)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    社交网络平台的快速普及使得社交网络中的个人隐私泄露问题愈发受到用户的关心,传统的数据隐私保护方法无法满足用户数量巨大、关系复杂的社交网络隐私保护需求.图修改技术是针对社交网络数据的隐私保护所提出的一系列隐私保护措施,其中不确定图是将确定图转化为概率图的一种隐私保护方法.主要研究了不确定图中边概率赋值算法,提出了基于差分隐私的不确定图边概率赋值算法,该算法具有双重隐私保障,适合社交网络隐私保护要求高的场景.同时提出了基于三元闭包的不确定图边概率分配算法,该算法在实现隐私保护的同时保持了较高的数据效用,适合简单的社交网络隐私保护场景.分析与比较表明:与(k,ε)-混淆算法相比,基于差分隐私的不确定图边概率赋值算法可以实现较高的隐私保护效果,基于三元闭包的不确定图边概率分配算法具有较高的数据效用性.最后,为了衡量网络结构的失真程度,提出了基于网络结构熵的数据效用性度量算法,该算法能够度量不确定图与原始图结构的相似程度.

    Abstract:

    The rapid popularization of the social network platform is causing growing concern among users of personal privacy disclosure in social networks, and due to the characters of social network which have the large number of users and with complicated relationships, the traditional privacy preserving method cannot be applied to the social network privacy protection which have a number of users and complicated. Graph modification technique is a series of privacy preserving methods proposed for the privacy preserving of social network data. Uncertain graph is a privacy preserving method, which converting a deterministic graph into a probability graph. In this study, the edge probability assignment algorithm is mainly focused on in the uncertain graph, and an algorithm for assigning the edge probability assignment is proposed based on differential privacy. The algorithm has a double privacy protection, which is suitable for social networks with high privacy requirements. Meanwhile, a different algorithm of uncertain graphs' edge probability assignment is presented based on the triadic closure, which achieves privacy preserve while maintains high data utility and suitable for simple social networks. The analysis and comparison show that the algorithm for assigning the edge probabilities of uncertain graph based on differential privacy can achieve a higher privacy preserving which was compared with obfuscation algorithm, and the algorithm of uncertain graphs' edge probability assignment based on triadic closure has higher data utility. Finally, in order to measure the distortion of the network structure, a data utility measure is proposed based on network structure entropy. The algorithm can measure the similarity between the uncertain graph and the original structure.

    参考文献
    相似文献
    引证文献
引用本文

吴振强,胡静,田堉攀,史武超,颜军.社交网络下的不确定图隐私保护算法.软件学报,2019,30(4):1106-1120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-01
  • 最后修改日期:2017-07-13
  • 录用日期:
  • 在线发布日期: 2019-04-01
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号