Abstract:For intelligent transportation systems, digital military battlefield and driver assistance systems, it is of great practical value to predict the trajectories of moving objects with uncertainty in a real-time, accurate and reliable fashion. Intelligent trajectory prediction can not only provide accurate location-based services, but also monitor and estimate traffic to suggest the best path, and as such becomes an active research direction. Aiming to overcome the drawbacks of the existing methods, a new trajectory prediction model based on Gaussian mixture models called GMTP is proposed. The new model contains the following essential phases: (1) modeling the complex motion patterns based on Gaussian mixture models, (2) calculating the probability distribution of different types of motion patterns by using Gaussian mixture model in order to partition trajectory data into distinct components, and (3) inferring the most possible trajectories of moving objects via Gaussian process regression. The GMTP algorithm is naturally a Gaussian nonlinear statistical probability model and the advantage of the proposed model is that the result is not only a predicted value, but also a whole distribution beyond the future trajectories, therefore making it possible to infer the location in regard to some motion patterns, e.g., uniformly accelerated motion, by using statistical probability distribution. Extensive experiments are conducted on real trajectory data sets and the results show that the prediction accuracy of the GMTP algorithm is improved by 22.2% and 23.8%, and the runtime can be reduced by 92.7% and 95.9% on average, respectively, when compared to the Gaussian process regression model and Kalman filter prediction algorithm with similar parameter setting.