最坏分离的联合分辨率判别分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61170151); 教育部高等学校博士学科点专项科研基金(20133218110032)


Worst-Separated Couple-Resolution Discriminant Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实中,常需辨识低分辨率(low-resolution,简称LR)图像(如监控系统所捕捉的人脸),但相比通常的高(high-resolution,简称HR)或超(super-resolution,简称SR)分辨率图像而言,其含有相对较少的判别信息,致使通常的子空间学习算法,如结合主成分分析(principal components analysis,简称PCA)的线性判别分析(linear discriminant analysis,简称LDA)难以获得理想的识别效果.为了缓和该问题,最近所提出的联合判别分析(如SDA)借助与低分辨率相配对的高分辨率图像辅助设计LR图像分类器.在SDA的实现中,其采用了类似LDA的平均散度定义,使SDA遗传了LDA在投影时难以使相对靠近的类充分分离的问题.为了克服该不足,提出了针对LR图像识别的最坏分离的联合分辨率判别分析(worst-separated couple-resolution discriminant analysis,简称WSCR),从而使:(1) LR和HR投影到同一低维子空间;(2) 投影后的最小类间隔最大化.实验结果表明:与SDA相比,WSCR更适用于低分辨率的图像识别.

    Abstract:

    Low-resolution is an important issue when handling real world image recognition problems. The performance of traditional recognition algorithms, e.g. LDA/PCA, usually drops drastically due to the loss of discriminant information compared to those for high-resolution or super-resolution images. In order to solve this problem, many methods have been proposed in recent years based on coupled projections, i.e. learning two sets of different projections, one for high-resolution images and one for low-resolution images. For example, SDA (simultaneous discriminant analysis) obtains projections by maximizing the average between-class scatter while minimizing the average within-class scatters. Like LDA, SDA cannot separate projected classes, especially for those that are closer to each other. In this paper, a novel discriminant analysis method is proposed to achieve the optimal projections by maximizing the minimum distance between pair-wise classes. Experiments on several image datasets verify the efficiency of the presented methods.

    参考文献
    相似文献
    引证文献
引用本文

杨磊磊,陈松灿.最坏分离的联合分辨率判别分析.软件学报,2015,26(6):1386-1394

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-02
  • 最后修改日期:2014-03-27
  • 录用日期:
  • 在线发布日期: 2015-06-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号