基于粗糙集与差分免疫模糊聚类算法的图像分割
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61203303, 61202176, 61272279)


Image Segmentation Based on Rough Set and Differential Immune Fuzzy Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了基于粗糙集模糊聚类与差分免疫克隆聚类的图像分割算法.该算法在差分免疫克隆聚类算法的基础上,通过引入粗糙集模糊聚类,将差分免疫克隆聚类算法中的硬聚类变成模糊聚类,从而获得更丰富的聚类信息.具体来说,由于粗糙集的优势是处理不确定的数据,因此,加入粗糙集模糊聚类后更有利于算法解决不确定性问题.通过对9幅图像分割实验结果与4种算法的对比,验证了该算法在聚类性能稳定性方面的优越性,结果还同时证明了该算法具有更高的分割正确率和更好的分割结果.

    Abstract:

    In this paper, a new method based on rough-fuzzy set and differential immune clone clustering algorithm (DICCA) for image segmentation is proposed. By replacing hard clustering with fuzzy clustering through incorporating rough-fuzzy set into DICCA, this algorithm can obtain more abundant clustering information. Specially, as the advantage of rough set is processing uncertain data, the proposed algorithm is more conducive to solve the uncertainty problem. In experiments, nine images are used for segmentation and four algorithms are chosen for comparison to validate the performance in the clustering stability. The experimental results show that the algorithm has higher segmentation accuracy and better segmentation results.

    参考文献
    相似文献
    引证文献
引用本文

马文萍,黄媛媛,李豪,李晓婷,焦李成.基于粗糙集与差分免疫模糊聚类算法的图像分割.软件学报,2014,25(11):2675-2689

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-03-15
  • 最后修改日期:2013-11-11
  • 录用日期:
  • 在线发布日期: 2014-11-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号