记忆增强的动态多目标分解进化算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60975076); 福建省教育厅科技项目(JA12221)


Memory Enhanced Dynamic Multi-Objective Evolutionary Algorithm Based on Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实世界中的一些多目标优化问题经常受动态环境影响而不断发生变化,要求优化算法不断地及时跟踪时变的Pareto 最优解集.提出了一种记忆增强的动态多目标分解进化算法.将动态多目标优化问题分解为若干个动态单目标优化子问题并同时优化这些子问题,以便快速逼近Pareto 最优解集.给出了一个改进的环境变化检测算子,以便更好地检测环境变化.设计了一种基于子问题的串式记忆方法,利用过去类似环境下搜索到的最优解来有效地响应新的环境变化.在8 个标准的测试问题上,将新算法与其他3 种记忆增强的动态进化多目标优化算法进行了实验比较.结果表明,新算法比其他3 种算法具有更快的运行速度、更强的记忆能力与鲁棒性能,并且新算法所获得的解集还具有更好的收敛性与分布性.

    Abstract:

    In addition to the need for satisfying several objectives, many real-world problems are also dynamic and require the optimization algorithm to continuously track the time-varying Pareto optimal set over time. This paper proposes a memory enhanced dynamic multi-objective evolutionary algorithm based on decomposition (denoted by dMOEAD-M). Specifically, the dMOEAD-M decomposes a dynamic multi-objective optimization problem into a number of dynamic scalar optimization subproblems and optimizes them simultaneously. An improved environment detection operator is presented. Also, a subproblem-based bunchy memory scheme, which allows evolutionary algorithm to store good solutions from old environments and reuse them as necessary, is designed to respond to the environment change. Simulation results on eight benchmark problems show that the proposed dMOEAD-M not only runs at a faster speed, more memory capabilities, and a better robustness, but is also able to find a much better spread of solutions and converge better near the changing Pareto optimal front, compared with three other memory enhanced dynamic evolutionary multi-objective optimization algorithms.

    参考文献
    相似文献
    引证文献
引用本文

刘敏,曾文华.记忆增强的动态多目标分解进化算法.软件学报,2013,24(7):1571-1588

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-12-27
  • 最后修改日期:2012-07-26
  • 录用日期:
  • 在线发布日期: 2013-07-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号