自适应的软子空间聚类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.10771176 (国家自然科学基金); the Fujian Provincial Natural Science Foundation of China under Grant No.2009J01273 (福建省自然科学基金); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China under Grant No.[2008]890 (国家教育部留学回国人员科研启动基金); the Key Scientific Research Project of the Higher Education Institutions of Fujian Province of China under Grant No.JK2009006 (福建省省属高校科研专项重点项目)


Adaptive Algorithm for Soft Subspace Clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    软子空间聚类是高维数据分析的一种重要手段.现有算法通常需要用户事先设置一些全局的关键参数,且没有考虑子空间的优化.提出了一个新的软子空间聚类优化目标函数,在最小化子空间簇类的簇内紧凑度的同时,最大化每个簇类所在的投影子空间.通过推导得到一种新的局部特征加权方式,以此为基础提出一种自适应的k-means型软子空间聚类算法.该算法在聚类过程中根据数据集及其划分的信息,动态地计算最优的算法参数.在实际应用和合成数据集上的实验结果表明,该算法大幅度提高了聚类精度和聚类结果的稳定性.

    Abstract:

    Soft subspace clustering is a key for high-dimensional data analysis. The existing algorithms usually require users to estimate some key global parameters in advance, and ignore the optimization of subspaces. A novel objective function, to be optimized by the soft subspace clustering algorithms, is proposed in this paper by taking into account both minimization of the compact subspace clusters and maximization of the subspaces in which the clusters exist. Based on this, a new locally feature weighting scheme is derived, and an adaptive algorithm for k-means type soft subspace clustering is presented. In the new algorithm, the optimal values of parameter are automatically computed, according with the dataset and its partitions. Experimental results carried out on some real-world and synthesis datasets demonstrate that the proposed method significantly improves the accuracy as well as the stability of the clustering results.

    参考文献
    相似文献
    引证文献
引用本文

陈黎飞,郭躬德,姜青山.自适应的软子空间聚类算法.软件学报,2010,21(10):2513-2523

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-04-24
  • 最后修改日期:2009-10-19
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号