一种基于语料特性的聚类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60933005 (国家自然科学基金); the National Basic Research Program of China under Grant Nos.2007CB311100, 2004CB318109 (国家重点基础研究发展计划(973)); the National High-Tech Research and Development Plan of China under Grant No.2007AA01Z441 (国家高技术研究发展计划(863))


Clustering Algorithm Based on the Distributions of Intrinsic Clusters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为寻求模型不匹配问题的一种恰当的解决途径,提出了基于语料分布特性的CADIC(clustering algorithm based on the distributions of intrinsic clusters)聚类算法。CADIC以重标度的形式隐式地将语料特性融入算法框架,从而使算法模型具备更灵活的适应能力。在聚类过程中,CADIC选择一组具有良好区分度的方向构建CADIC坐标系,在该坐标系下统计固有簇的分布特性,以构造各个坐标轴的重标度函数,并以重标度的形式对语料分布进行隐式的归一化,从而提高聚

    Abstract:

    In finding a flexible approach to solve the model misfit problem, a clustering algorithm based on the distributions of intrinsic clusters (CADIC) is proposed, which implicitly integrates distribution characteristics into the clustering framework by applying rescaling operations. In the clustering process, a set of discriminative directions are chosen to construct the CADIC coordinate, under which the distribution characteristics are analyzed in order to design rescaling functions. Along every axis, rescaling functions are applied to implicitly normalize the data distribution such that more reasonable clustering decisions can be made. As a result, the reliability of clustering decisions is improved. The time complexity of CADIC remains the same as K-means by using a K-means-like iteration strategy. Experiments on well-known benchmark evaluation datasets show that the framework of CADIC is reasonable, and its performance in text clustering is comparable to that of state-of-the-art algorithms.

    参考文献
    相似文献
    引证文献
引用本文

曾依灵,许洪波,吴高巍,白硕.一种基于语料特性的聚类算法.软件学报,2010,21(11):2802-2813

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-10-22
  • 最后修改日期:2009-07-07
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号