基于彩色编码的多态蠕虫特征自动提取方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60673164, 60773111 (国家自然科学基金); the National Basic Research Program of China under Grant No.2008CB317107 (国家重点基础研究发展计划(973)); the Program for Changjiang Scholars and Innovative Research Team in University of China under Grant No.IRT0661 (长江学者和创新团队发展计划)


Automated Signature Generation Approach for Polymorphic Worm Based on Color Coding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    快速而准确地提取蠕虫特征对于有效防御多态蠕虫的传播至关重要,但是目前的特征产生方法在噪音干扰下无法产生正确的蠕虫特征.提出基于彩色编码的特征自动提取算法CCSF(color coding signature finding)来解决有噪音干扰情况下的多态蠕虫特征提取问题.CCSF算法将可疑池中的n条序列分成m组,然后运用彩色编码对每组序列进行特征提取.通过对每组提取出来的特征集合进行过滤筛选,最终产生正确的蠕虫特征.采用多类蠕虫对CCSF算法进行测试,并与其他蠕虫特征提取方法进行比较,结果表明,CCSF算法能够在有噪音干扰的条件下准确地提取出多态蠕虫的特征,该特征不包含碎片,易于应用到IDS(intrusion detection system)中对多态蠕虫进行检测.

    Abstract:

    A fast and accurate generation of worm signatures is essential in efficiently defending worm propagation. Most of the recent signature generation approaches do not generate accurate signatures for polymorphic worms in environments with noise. In this paper, a CCSF (color coding signature finding) algorithm is presented to solve the problem of a polymorphic worm signature generation with noise by using color coding. In the CCSF algorithm, n sequences are divided into m group, and signatures for every group sequence are generated by color coding. After filtering all signatures, an accurate worm signature is generated. CCSF’s range of polymorphic worms is evaluated. When comparing CCSF with other existing approaches, CCSF shows a distinct advantages in generating accurate signatures for polymorphic worms in the presence of noise. Signatures generated do not contain fragments and can be used conveniently to detect polymorphic worms in IDS (intrusion detection system).

    参考文献
    相似文献
    引证文献
引用本文

汪洁,王建新,陈建二.基于彩色编码的多态蠕虫特征自动提取方法.软件学报,2010,21(10):2599-2609

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-09-18
  • 最后修改日期:2009-04-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号