密度敏感的多智能体进化聚类算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60703107, 60703108 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z107 (国家高技术研究发展计划(863))


Density Sensitive Based Multi-Agent Evolutionary Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用密度敏感距离作为数据相似性度量,并基于多智能体进化的思想提出了一种密度敏感的多智能体进化聚类(density sensitive based multi-agent evolutionary clustering,简称DSMAEC)算法.算法设计了一种基于连接的编码方式,通过解码过程可直接得到最终的聚类结果,无需事先确定聚类类别数,有效地克服了对领域知识的依赖.针对聚类问题,设计了3个有效的进化算子来模拟智能体间的竞争、合作和自学习行为,共同完成智能体的进化,最终达到对数据聚类的目的.分别对人工数据集、UCI数据集以及合成纹理图像进行仿真,实验结果表明,该算法不但可以自动确定聚类类别数,而且能够应付不同结构的数据,适应不同的聚类要求,具有较强的实用价值.

    Abstract:

    By using the density sensitive distance as the similarity measurement, an algorithm of Density Sensitive based Multi-Agent Evolutionary Clustering (DSMAEC), based on multi-agent evolution, is proposed in this paper. DSMAEC designs a new connection based encoding, and the clustering results can be obtained by the process of decoding directly. It does not require the number of clusters to be known beforehand and overcomes the dependence of the domain knowledge. Aim at solving the clustering problem, three effective evolutionary operators are designed for competition, cooperation, and self-learning of an agent. Some experiments about artificial data, UCI data, and synthetic texture images are tested. These results show that DSMAEC can confirm the number of clusters automatically, tackle the data with different structures, and satisfy the diverse clustering request.

    参考文献
    相似文献
    引证文献
引用本文

潘晓英,刘芳,焦李成.密度敏感的多智能体进化聚类算法.软件学报,2010,21(10):2420-2431

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-01-21
  • 最后修改日期:2009-03-31
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号