基于小波概要的并行数据流聚类
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60803021, 60973047 (国家自然科学基金); the Zhejiang Provincial Natural Science Foundation of China under Grant No.Y1091189 (浙江省自然科学基金); the Ningbo Municipal Natural Science Foundation of China under Grant Nos.2007A610007, 2009A610072 (宁波市自然科学基金)


Wavelet Synopsis Based Clustering of Parallel Data Streams
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    许多应用中会连续不断产生大量随时间演变的序列型数据,构成时间序列数据流,如传感器网络、实时股票行情、网络及通信监控等场合.聚类是分析这类并行多数据流的一种有力工具.但数据流长度无限、随时间演变和大数据量的特点,使得传统的聚类方法无法直接应用.利用数据流的遗忘特性,应用离散小波变换,分层、动态地维护每个数据流的概要结构.基于该概要结构,快速计算数据流与聚类中心之间的近似距离,实现了一种适合并行多数据流的K-means聚类方法.所进行的实验验证了该聚类方法的有效性.

    Abstract:

    In many real-life applications, such as stock markets, network monitoring, and sensor networks, data are modeled as dynamic evolving time series which is continuous and unbounded in nature, and many such data streams concur usually. Clustering is useful in analyzing such paralleled data streams. This paper is interested in grouping these evolving data streams. For this purpose, a synopsis is maintained dynamically for each data stream. The construction of the synopsis is based on Discrete Wavelet Transform and utilizes the amnesic feature of data stream. By using the synopsis, a fast computation of approximate distances between streams and the cluster center can be implemented, and an efficient online version of the classical K-means clustering algorithm is developed. Experiments have proved the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陈华辉,施伯乐,钱江波,陈叶芳.基于小波概要的并行数据流聚类.软件学报,2010,21(4):644-658

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-15
  • 最后修改日期:2008-11-28
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号