传感器网络中误差有界的小波数据压缩算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60973031, 60973127 (国家自然科学基金); the Scientific Research Fund of Hu’nan Provincial Construction Department of China under Grant No.200609 (湖南省建设厅科技计划)


Haar Wavelet Data Compression Algorithm with Error Bound for Wireless Sensor Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无线传感器网络通常能量、带宽有限,难以适应大量数据传输的需求,需要对原始采样数据进行网内近似或聚合.通过设计误差树和解回归方程组,提出了一种无穷范数误差有界的数据压缩方案.该方法可以同时探索传感器数据中的时间相关和多属性间相关.通过一维Haar小波变换来消除单个数据流中的时间相关.若单个传感器节点可以采集多种物理量,即产生多个数据流,则根据相关系数矩阵选择其中的若干个数据流作为基信号,其他数据流借助一个基用线性回归参数来表示.实验结果表明,该算法能够有效地利用传感数据中存在的时间相关和多属性间相关,显著减少了冗余数据.

    Abstract:

    Wireless sensor networks usually have limited energy and transmission capacity, and they can’t match the transmission of a great deal of data. So, it is necessary to approximate or aggregate raw data sampled by sensors in networks. By designing an error tree and solving the regression equations set, this paper proposes a data compression scheme with infinite norm error bound for wireless sensor networks. The algorithms in the scheme can simultaneously explore the temporal and multiple-streams correlations among the sensory data. The temporal correlation in one stream is captured by the 1D Haar wavelet transform. For multivariate monitoring sensor networks, some streams from one sensor are selected as the bases according to the correlation coefficient matrix, and the other streams from the same sensor node can be expressed with one of these bases using linear regression. Theoretically and experimentally, it is concluded that the proposed algorithms can effectively exploit the temporal and multiple-streams correlations on the same sensor node and achieve significant data reduction.

    参考文献
    相似文献
    引证文献
引用本文

张建明,林亚平,周四望,欧阳竞成.传感器网络中误差有界的小波数据压缩算法.软件学报,2010,21(6):1364-1377

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2008-10-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号