摘要:提出一种潜在属性空间树分类器(latent attribute space tree classifier,简称LAST)框架,通过将原属性空间变换到更容易分离数据或更符合决策树分类特点的潜在属性空间,突破传统决策树算法的决策面局限,改善树分类器的泛化性能.在LAST 框架下,提出了两种奇异值分解斜决策树(SVD (singular value decomposition) oblique decision tree,简称SODT)算法,通过对全局或局部数据进行奇异值分解,构建正交的潜在属性空间,然后在潜在属性空间内构建传统的单变量决策树或树节点,从而间接获得原空间内近似最优的斜决策树.SODT 算法既能够处理整体数据与局部数据分布相同或不同的数据集,又可以充分利用有标签和无标签数据的结构信息,分类结果不受样本随机重排的影响,而且时间复杂度还与单变量决策树算法相同.在复杂数据集上的实验结果表明,与传统的单变量决策树算法和其他斜决策树算法相比,SODT 算法的分类准确率更高,构建的决策树大小更稳定,整体分类性能更鲁棒,决策树构建时间与C4.5 算法相近,而远小于其他斜决策树算法.