面向智能空间的位置感知方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60372042 (国家自然科学基金)


Research on Smart Space Oriented Location Awareness Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    位置感知是智能空间中的重要技术.在分析了现有基于移动自组网的位置感知方法后,提出了一种基于多维定标(multidimensional scaling,简称MDS)的新的位置感知方法——SSOLA(smart space oriented locationawareness method),可以对智能空间中的无线通信节点进行精确定位,获得节点之间的相对位置(坐标);当有极少数位置已知的锚节点(2 维定标存在3 个以上锚节点,3 维定标存在4 个以上锚节点)时,可以得到全网所有节点的绝对位置(坐标).SSOLA 算法的设计思想是:以MDS 分析为核心,采用Euclidean 测距方法计算节点间距离矩阵,采用1 跳和2 跳局部图相结合的自适应选择机制构建局部图,各节点独立计算局部图,最终合成全局位置图.此外,SSOLA 还可以与OLSR 路由算法相融合,从整体上减轻了SSOLA 算法的执行开销,提高了定位效率.仿真实验结果表明,SSOLA 具有对锚节点依赖小、定位精度高、可扩展性好、执行速度快等优点,对原始测量误差也有较强的鲁棒性,可以应用于战术互联网、智能战场等大规模无线通信环境中.

    Abstract:

    Smart space is a result of pervasive computing embodying the integration of computer, communication and digital media technology, which makes it possible to integrate the physical world and the virtual world in theinformation space together as a whole. Location awareness is a key technology of smart space, and is the basicservice needed by other applications. Multidimensional scaling (MDS) is a technique in mathematical psychology,which can the distance or dissimilarity measures between points and produce a representation of the data in a smallnumber of dimensions. In the paper, MDS is used to derive node locations that fit those estimated distances, and asmart space oriented location awareness method (SSOLA) is proposed, which can position all the nodes of thenetworks accurately only by means of the connectivity information—who is within communications range of whom.Provided with known positions for several anchor nodes, the absolute positions for all nodes can be got by SSOLA. Simulation studies demonstrate that SSOLA is more robust to measurement error, and has less positioning error, lesstime cost and better scalability than previous proposals in the same conditions. Furthermore, it can achievecomparable results using much fewer anchor nodes than previous methods, and even yields relative coordinateswhen no anchor nodes are available. SSOLA can be used in large and heavy traffic wireless environment, such asintelligent battlefield, tactical internet, etc.

    参考文献
    相似文献
    引证文献
引用本文

明亮,赵刚,谢桂海,王春雷.面向智能空间的位置感知方法研究.软件学报,2009,20(3):671-681

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-07-19
  • 最后修改日期:2007-10-26
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号