公平的有向传感器网络方向优化和节点调度算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60603061 (国家自然科学基金)


Equitable Direction Optimizing and Node Scheduling for Coverage in Directional Sensor Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决有向传感器网络中点目标覆盖控制问题,分别提出了两种方向优化算法和一个节点调度协议:改进的贪婪(enhanced greedy algorithm,简称EGA)、公平的方向优化(equitable direction optimization,简称EDO)算法和邻居节点调度协议(neighbors sensing scheduling,NSS).EGA 基于覆盖最多未覆盖的目标数选取工作方向,其不足是可能忽略临界目标.EDO 优化算法调节节点的工作方向,优先覆盖临界目标,公平分配感知资源,减小目标覆盖度的差异,EDO 算法使用效用值评价每个方向对网络覆盖质量的贡献大小,影响效用值的因素包括每个方向上的目标数、目标的覆盖度和邻居节点的方向决策,EDO 总是选择效用值最大的方向作为工作方向.NSS 协议引入局部覆盖集的概念,通过局部覆盖集判断当前节点是否为冗余节点,并在考虑节点剩余能量时决定节点是否可以转为睡眠,调度协议允许一个节点加入多个覆盖集,覆盖集轮流工作,使网络生存期最大化.仿真实验结果表明,分布式的EDO 算法比EGA 算法具有更好的方向优化性能,临界目标的覆盖质量提高了30%,同时明显地提高了网络生存期.

    Abstract:

    To meet the coverage challenges arising in directional wireless sensor networks, this paper presents twodistributed direction optimizing algorithms and a node scheduling: enhanced greedy algorithm (EGA), equitabledirection optimization (EDO) and neighbors sensing scheduling (NSS) protocol. EGA algorithm optimizes directionmerely according to the amount of uncovered targets. It is used as the baseline for comparison. EDO adjusts thedirections of nodes to cover the critical targets superiorly and allocates sensing resource among nodes fairly tominimize the coverage differences between nodes. The utility function is introduced in EDO to assess the value of adirection contributed to overall networks sensing. The factors which affecting the utility are composed of the targetsin per direction, the coverage of targets and the neighbor’s decision of direction. EDO always selects the directionwith the maximum utility as the working direction. NSS arranges all sensors into multiple cover sets and allows anode to join several cover sets. Through employing local cover set, NSS identifies a redundant node and decideswhether it can sleep while taking residual energy to account. Nodes are activated in turn and the energy is consumedevenly to prolong the network life. The simulation shows that EDO outperforms EGA up to 30% in terms of criticalcoverage, and the combination of EDO and NSS prolongs the lifetime distinctly.

    参考文献
    相似文献
    引证文献
引用本文

温俊,蒋杰,窦文华.公平的有向传感器网络方向优化和节点调度算法.软件学报,2009,20(3):644-659

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-07-04
  • 最后修改日期:2007-11-05
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号