基于流形学习与隐条件随机场的人体动作识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60675021 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z120 (国家高技术研究发展计划(863)


Human Action Recognition Using Manifold Learning and Hidden Conditional Random Fields
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于流形学习与隐条件随机场(hidden conditional random fields,简称HCRF)的动作识别方法.算法提取人体剪影作为输入特征,采用有监督的保持邻域嵌入(neighborhood preserving embedding,简称NPE)的子空间学习算法获得高维运动特征的低维流形表示,基于HCRF建模运动特征与动作语义之间的映射关系.在降维过程中,通过保持数据的局部邻接关系,NPE可以获取动作特征在低维流形空间上的本质分布特性.与HMM(hidden Markov model)等产生式模型相比,HCRF侧重从样本数据中抽取共有特征以获取正确的分类边界,不需要假定观测过程条件独立,可以更加自然地对动作的时空邻域关系进行建模.实验结果表明,即便对于特征差异较大或存在噪声干扰的动作序列,算法也能取得较好的识别效果.

    Abstract:

    This paper presents a probabilistic method of human action recognition based on manifold learning and Hidden Conditional Random Fields (HCRF). A supervised Neighborhood Preserving Embedding (NPE) is employed for dimensionality reduction by preserving the local neighborhood structure on the data manifold. Most existing approaches to action recognition use a Hidden Markov Model or suitable variant to model actions; a significant limitation of these models is the requirements of conditional independence of observations. In addition, generative models are selected to maximize the likelihood of generating all the examples of a given class and may not uncover the distinctive configuration that sets one class uniquely against others. HCRF relaxes the independence assumption and classifies actions in a discriminative hidden-state formulation. Experimental results on a recent database have demonstrated that this approach can recognize human actions accurately with temporal, intra- and inter-person variations even when noise and other factors such as partial occlusion exist.

    参考文献
    相似文献
    引证文献
引用本文

刘法旺,贾云得.基于流形学习与隐条件随机场的人体动作识别.软件学报,2008,19(zk):69-77

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-01
  • 最后修改日期:2008-11-25
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号