V-系统与几何群组信息的频域表达
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.10631080,10771002 (国家自然科学基金); the National Basic Research Program of China under Grant No.2004CB318000 (国家重点基础研究发展计划(973)); the Science and Technology Development Fund of Macao SAR of China under Grant No.045/2006/A (澳门科学技术发展基金)


V-System and Expression of Geometric Group Information in Frequency Domain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    V-系统是一类由分片多项式构成的正交函数系,函数系中既有连续函数又有间断函数.它既能用于信号处理,也能适应几何图组整体表达,在计算机辅助几何设计(CAGD)中可以精确重构几何造型信息,做到消除Gibbs现象,从而可以进行复杂造型的整体特征分析.利用三角域上V-系统进行三维复杂几何模型的重构实验,实验结果表明,V-系统对复杂的、连续间断并存的几何信息重构特别有效,这与经典的连续正交函数系及强间断的Walsh及Haar函数系有本质的不同.

    Abstract:

    The V-system is a new class of complete orthogonal functions system in L2[0,1], which is composed of piecewise kth-order polynomials. There are continuous functions as well as discontinuous functions in V-system. It can be used for signal processing and global expression of a geometric graph group. Moreover, the information of geometric modeling in CAGD can be reconstructed precisely by finite terms of V-system without Gibbs phenomenon, so global feature analysis of the complicated modeling can be implemented. This paper shows that 3-dimension complicated geometric model can be reconstructed by the V-system over triangulated domain. The experiment results indicate that V-system is an effective tool used to reconstruct complicated geometric information with both continuous and discontinuous signals. This is the essential difference among V-system, the classical complete orthogonal system with continuous functions and Walsh and Haar system which include intense discontinuous functions.

    参考文献
    相似文献
    引证文献
引用本文

李 坚,宋瑞霞,叶梦杰,梁延研,齐东旭. V-系统与几何群组信息的频域表达.软件学报,2008,19(zk):41-51

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-03
  • 最后修改日期:2008-11-14
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号