基于语义域语言模型的中文话题关联检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60435020, 60503072, 60736044 (国家自然科学基金); the National High-Tech Research and Development of China under Grant No.2006AA01Z145 (国家高技术研究发展计划(863))


Chinese Topic Link Detection Based on Semantic Domain Language Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    关联检测是话题检测与跟踪领域的基础性研究,其任务是检测任意新闻报道对是否论述同一话题.通过分析报道内容的结构关系和语义的分布规律,提出基于语义域语言模型的关联性检测方法,并在此基础上检验融入依存分析的语义描述策略对该模型性能的影响.实验采用TDT4中文语料进行评测,结果显示语义域语言模型显著改进了现有检测系统的性能,其最小DET代价降低了约3个百分点.

    Abstract:

    Topic link detection is a foundational research in the field of topic detection and tracking, which detects whether two random stories talk about the same topic. This paper proposes a method of applying semantic domain language model to link detection, based on the structure relation among contents and the semantic distribution in a story, and also verifies the influence of the strategy incorporating dependency parsing into semantic description. Evaluation on Chinese Corpus of TDT4 show that the semantic domain language model substantially improved the performance of current detection system, whose minimum DET cost is reduced by about 3 percent.

    参考文献
    相似文献
    引证文献
引用本文

洪 宇,张 宇,范基礼,刘 挺,李 生.基于语义域语言模型的中文话题关联检测.软件学报,2008,19(9):2265-2275

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-07-14
  • 最后修改日期:2007-11-20
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号