面向文本分类的混淆类判别技术
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supportet by the National Natural Science Foundation of China under Grant No.60473140(国家自然科学基金);the National 985 Project of China under Grant No.985-2-DB-C03(国家985工程项目);the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0287(新世纪优秀人才计划);the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z154(国家高技术研究发展计划(863))


Confusion Class Discrimination Techniques for Text Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分析了文本分类过程中存在的混淆类现象,主要研究混淆类的判别技术,进而改善文本分类的性能.首先,提出了一种基于分类错误分布的混淆类识别技术,识别预定义类别中的混淆类集合.为了有效判别混淆类,提出了一种基于判别能力的特征选取技术,通过评价某一特征对类别之间的判别能力实现特征选取.最后,通过基于两阶段的分类器设计框架,将初始分类器和混淆类分类器进行集成,组合了两个阶段的分类结果作为最后输出.混淆类分类器的激活条件是:当测试文本被初始分类器标注为混淆类类别时,即采用混淆类分类器进行重新判别.在比较实验中采用了Newsgroup和863中文评测语料,针对单标签、多类分类器.实验结果显示,该技术有效地改善了分类性能.

    Abstract:

    This paper analyzes confusion class phenomena existing in text classification procedure, and studies further confusion class discrimination techniques to improve the performance of text classification. In this paper, firstly a technique for confusion class recognition based on classification error distribution is proposed to recognize confusion class sets existing in the pre-defined taxonomy. To effectively discriminate confusion classes, this paper proposes an approach to feature selection based on discrimination capability in the procedure of which each candidate feature's discrimination capability for class pair is evaluated. At last, two-stage classifiers are used to integrate baseline classifier and confusion class classifiers, and in which the two output results from two stages are combined into the final output results. The confusion class classifiers in the second stage could be activated only when the output class of the input text assigned by baseline classifier in the first stage belongs to confusion classes, then the confusion class classifiers are used to discriminate the testing text again. In the comparison experiments, Newsgroup and 863 Chinese evaluation data collection are used to evaluate the effectiveness of the techniques proposed in this paper, respectively. Experimental results show that the methods could improve significantly the performance for single-label and multi-class classifier (SMC).

    参考文献
    相似文献
    引证文献
引用本文

朱靖波,王会珍,张希娟.面向文本分类的混淆类判别技术.软件学报,2008,19(3):630-639

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-07-02
  • 最后修改日期:2006-10-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号