基于FP-Tree的反向频繁项集挖掘
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60403041 (国家自然科学基金)


Inverse Frequent Itemset Mining Based on FP-Tree
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在拓展现有反向频繁挖掘问题定义,探索反向频繁项集的3个具体应用后,提出了一种基于FP-tree的反向频繁项集挖掘方法.该方法首先采用分治思想,将目标约束划分为若干子约束,每步求解一个子线性约束问题,经过若干步迭代后找到一个满足整个给定约束的目标FP-tree;然后根据目标FP-tree生成一个仅含频繁项的临时事务数据库TempD;最后通过向TempD中撒入非频繁项得到目标数据集.理论分析和实验表明该方法是正确的、高效的,且与现有方法仅能输出1个目标数据集相比,该方法能够输出较多的目标数据集.

    Abstract:

    After the current definition of the inverse frequent set mining problem is expanded and its three practical applications are explored, an FP-tree-based method is proposed for the inverse mining problem. First, the method divides target constraints into some sub constraints and each time it solves a sub linear constraint problem. After some iterations, it finds an FP-tree satisfying the whole given constraints. Then, based on the FP-tree it generates a temporary database TempD that only involves frequent items. The target datasets are obtained by scattering infrequent items into TempD. Theoretic analysis and experiments show that the method is right and efficient. Moreover, compared with the current methods, the method can output more than one target data set.

    参考文献
    相似文献
    引证文献
引用本文

郭宇红,童云海,唐世渭,杨冬青.基于FP-Tree的反向频繁项集挖掘.软件学报,2008,19(2):338-350

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-06-10
  • 最后修改日期:2007-02-05
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号