基于特征选择的轻量级入侵检测系统
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Basic Research Program of China under Grant No.2004CB318109 (国家重点基础研究发展计划(973)); the National Information Security 242 Project of China under Grant No.2005C39 (国家242信息安全计划)


Lightweight Intrusion Detection System Based on Feature Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于特征选择的入侵检测系统处理的数据含有大量的冗余与噪音特征,使得系统耗用的计算资源很大,导致系统训练时间长、实时性差,检测效果不好.特征选择算法能够很好地消除冗余和噪音特征,为了提高入侵检测系统的检测速度和效果,对基于特征选择的入侵检测系统进行研究是必要的.综述了这一领域的研究进展,从过滤器、封装器、混合器3种模式对基于特征选择的轻量级入侵检测系统进行分类比较,分析和总结各种系统的优缺点以及它们各自适用的条件,最后指出入侵检测领域特征选择的发展趋势.特征选择不仅可以提升入侵检测系统的性能,而且使得对入侵检测的研究向特征提取算法的方向转移.

    Abstract:

    The intrusion detection system based on feature selection deals with huge amount of data which contains redundant and noisy features causing slow training and testing process, high resource consumption as well as poor detection rate. Feature selection, therefore, is an important issue in intrusion detection and it can delete redundant and noisy features. In order to improve performances of intrusion detection system in terms of detection speed and detection rate, a survey of intrusion detection system based on feature selection is necessary. This paper introduces the concepts and algorithms of feature selection, surveys the existing lightweight intrusion detection systems based on feature selection algorithms, groups and compares different systems in three broad categories: filter, wrapper, and hybrid. This paper concludes the survey by identifying trends of feature selection research and development in intrusion detection system. Feature selection is not only useful for intrusion detection system, but also helpful to provide a new research direction for intrusion detection system.

    参考文献
    相似文献
    引证文献
引用本文

陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统.软件学报,2007,18(7):1639-1651

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-10-08
  • 最后修改日期:2007-03-26
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号