摘要:在数据流环境下,聚类算法不仅需要有较高的聚类质量,同时需要有实时处理速度.因而,提出了一类基于图形处理器(graphics processing unit,简称GPU)的快速聚类方法,包括基于K-means的基本聚类方法、基于GPU的数据流聚类以及数据流簇进化分析方法.这些方法的共同特点是充分利用了GPU强大的处理能力和流水线特性.与以往具有独立框架的数据流聚类算法不同,这些基于GPU的聚类算法具有同一框架和多种聚类分析功能,为数据流聚类分析提供了统一的平台.从分析可知,数据流聚类分析的核心操作实际上就是距离计算和比较.基于这一认识,利用GPU的子素向量处理功能进行距离计算.性能验证实验是在配有Pentium IV 3.4G CPU和NVIDIA GeForce 6800 GT显卡的PC上进行的.综合分析和实验结果表明,基于GPU的数据流聚类算法比传统的CPU算法平均快7倍,从而为高速数据流应用提供了良好的支持.