基于信任和K臂赌博机问题选择多问题协商对象
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60443003 (国家自然科学基金)


Choosing Multi-Issue Negotiating Object Based on Trust and K-Armed Bandit Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Agent之间的多问题协商(multi-issue negotiation)是一个复杂的动态交互过程.解决协商之前的对象选择问题在电子商务中有着重要的应用价值.为了提高多问题协商的准确性和购物Agent的效用,主要解决协商前的销售Agent的选择问题.为了充分利用协商历史,实现探索(exploration)和利用(exploitation)的折衷,把销售Agent的选择问题转变成K臂赌博机问题(K-armed bandit problem)来求解.提出了信任和声誉的度量模型,结合K臂赌博机问题的求解技术,采用学习机制,提出了几个确定奖励分布的改进算法.最后,以模拟协商过程为基础,将改进算法、信任和声誉有机地结合起来,提高了选择销售Agent的准确性和实用性.几个实验都说明了该工作在应用中的有效性.

    Abstract:

    Multi-Issue negotiation between Agents is a complicated course in which negotiating Agents mutually exchange offers. Solving the problem of choosing seller before negotiation has important practical value in e-commerce. The problem is solved in this paper to improve accuracy of the multi-issue negotiation and buying Agent’s utility. In order to fully utilize negotiation history, tradeoff exploration and exploitation, the problem of choosing seller is transformed into a K-armed bandit problem. A model for measuring trust and reputation is presented, several improved algorithms, which are used to learn reward distribution and combine learning with technologies for K-armed bandit problem, are presented. Finally, the combination of the improved algorithms, the trust and reputation improves the accuracy and practicability of choosing a selling Agent. Several experiments prove validity of the work in application.

    参考文献
    相似文献
    引证文献
引用本文

王黎明,黄厚宽,柴玉梅.基于信任和K臂赌博机问题选择多问题协商对象.软件学报,2006,17(12):2537-2546

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-01-12
  • 最后修改日期:2005-01-12
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号