基于语义距离的K-最近邻分类方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported bythe National High-Tech Research and Development Plan of China under Grant No.2003AA112050(国家高技术研究发展计划(863));the Key Science-Technology Project of the National'Tenth Five-Year-Plan'of China under Grant No.2001BA102A05-02(国家"十五"科技攻关计划)


K-Nearest Neighbor Classification Based on Semantic Distance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    最近邻分类方法中对距离机制的研究大都集中在根据何种计算方法将不同属性取值的差异集中起来,而未考虑到同一属性间取值的语义差异所带来的影响;而且传统算法的分类准确率对于不同抽象层次描述的数据集带来的数据不完整性相当敏感.针对这两个问题,提出一种基于语义距离的最近邻分类方法SDkNN(semantic distance based k-nearest neighbor).该方法分析了同一属性内取值的语义差异,说明了如何基于领域本体计算语义距离,并将其应用到kNN算法中.经过在UCI数据集以及实际应用数据集中验证,SDkNN的整体性能要优于传统方法,在数据不完整的情况下效果更为明显,实践证明,SDkNN有较好的应用价值.

    Abstract:

    Most research on distance metric of kNN classification is focused on how to integrate the differences caused by various attributes, and the semantic difference between values of the same attribute is ignored. In addition, classification accuracy of the traditional approaches is very sensitive to the incomplete data described on different abstract levels. In this paper, a novel kNN approach based on semantic distance——SDkNN (semantic distance based k-nearest neighbor) is presented, which solves the two problems mentioned above. This approach analyzes the semantic difference between values of an attribute and presents how to calculate the semantic distance based on domain ontologies, and the semantic distance is then used to improve the traditional kNN methods. Experiments on the UCI (University of California, Irvine) machine learning repository and real application datasets show that the overall performance of SDkNN outperforms the traditional one, especially when the data is incomplete. SDkNN also has the desirable application value in practice.

    参考文献
    相似文献
    引证文献
引用本文

杨立,左春,王裕国.基于语义距离的K-最近邻分类方法.软件学报,2005,16(12):2054-2062

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2004-04-09
  • 最后修改日期:2005-01-24
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号