遗传算法与蚂蚁算法动态融合的软硬件划分
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported bythe National Natural Science Foundation of China under Grant No.90207019(国家自然科学基金);the National High-Tech Research and Development Plan of China under Grant No2002AA1Z1480(国家高技术研究发展计划(863))


Hardware/Software Partitioning Based on Dynamic Combination of Genetic Algorithm and Ant Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向嵌入式系统和SoC(system-on-a-chip)软硬件双路划分问题,提出遗传算法与蚂蚁算法动态融合的软硬件划分算法.基本思想是:(1)利用遗传算法群体性、全局、随机、快速搜索的优势生成初始划分解,将其转化为蚂蚁算法所需的初始信息素分布,然后利用蚂蚁算法正反馈、高效6收敛的优势求取最优划分解;(2)在遗传算法运行过程中动态确定遗传算法与蚂蚁算法的最佳融合时机,避免由于遗传算法过早或过晚结束而影响划分算法的整体性能.该算法既发挥了遗传算法与蚂蚁算法在寻优搜索中各自的优势,又克服了遗传算法在搜索到一定阶段时最优解搜索效率低以及蚂蚁算法初始信息素匮乏的不足,并且在算法中提出了遗传算法与蚂蚁算法动态融合的衔接策略.实验结果表明,该算法在性能上明显优于遗传算法和蚂蚁算法,并且划分问题规模越大,优势越明显.

    Abstract:

    Genetic algorithm can do colony global searching quickly and stochastically, but can’t efficiently get to optimal results, since it slows down when solving to certain scope. On the other hand, ant algorithm gets to optimal results efficiently, but lacks initial pheromone at the beginning. To solve the hardware/software bi-partitioning problem in embedded system and system-on-a-chip design, the authors put forward a new algorithm based on dynamic combination of genetic algorithm and ant algorithm. The basic idea is: (1) using genetic algorithm to generate preliminary partitioning results, converting them into initial pheromone distribution for ant algorithm, and then using ant algorithm to search for optimal partitioning scheme; (2) while running genetic algorithm, dynamically determining the best combination time of genetic algorithm and ant algorithm to avoid too early or too late termination of the genetic algorithm. The algorithm utilizes the advantages of the two algorithms and overcomes their disadvantages, and it introduces a dynamic combination strategy between them. Experimental results show the algorithm excels genetic algorithm and ant algorithm in performance, and it is discovered that the bigger the partitioning problem is concerned, the better the algorithm performs.

    参考文献
    相似文献
    引证文献
引用本文

熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分.软件学报,2005,16(4):503-512

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-12-30
  • 最后修改日期:2004-05-08
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号