基于极大团和FP-Tree的挖掘关联规则的改进算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60073046 (国家自然科学基金); the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20020610007 (国家教育部博士点专项基金); the Natural Science Foundation of Guangxi Province of China under Grant No.0339039 (广西自然科学基金)


An Improved Algorithm Based on Maximum Clique and FP-Tree for Mining Association Rules
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    融合了关联规则挖掘的FP-Tree算法和图论的极大团理论的优势,做了以下主要工作:(1) 提出了用邻接矩阵的产生频繁2-项集的改进方法;(2) 提出了极大有序频繁集的概念,证明了Head关系的等价性、划分定理、局部复杂性定理和归并收敛值域定理;(3) 提出并实现了基于极大团划分的MaxCFPTree算法,扫描时间复杂性小于O(n2);(4) 做了相关实验,以验证算法的正确性.新方法缓解了项目数量巨大而内存不足的矛盾,提高了系统效率和伸缩性.

    Abstract:

    This paper integrates the advantage of the FP-Tree algorithm for mining association rules and the maximum clique theory of graph. The main contributions include: (1) An improved method to mine frequent 2-itemset by adjacency matrix is proposed. (2) The concept of maximum ordered frequent itemset is proposed, and the equivalence of Head Relation is proved as along with the theorems about Local Complexity and Merge Convergence Range. (3) The MaxCFPTree algorithm based on Maximum-clique partition is proposed and implemented with complexity O(n2). (4) The algorithms are validated by extensive experiments. The conflict between memory and huge number of items is resolved, and the system efficiency and scalability are improved.

    参考文献
    相似文献
    引证文献
引用本文

陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法.软件学报,2004,15(8):1198-1207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-10-28
  • 最后修改日期:2004-04-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号