一个基于模拟退火的多主体模型及其应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.70171052 (国家自然科学基金)


A Multi-Agent Model and Its Applications Based on Simulated Annealing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近些年,多主体系统的理论及应用得到了人们的广泛关注,并得以迅速发展.研究者提出了很多基于多主体系统理论的模型,用于求解各种问题.AER(Agent-environment-rules)模型正是一个用于求解约束满足问题较为成功的例子.但是,主体的静态策略选择在一定程度上限制了模型的求解性能.将模拟退火算法与多主体系统思想相结合,并赋予主体更为高效的动态策略选择的能力,提出了SAAER模型(simulated annealing based AER model).基于约束满足问题经典实例--N-Queen问题和染色问题的实验表明,改进后的模型较之原模型获得了更高的效率和稳定性.对于N=10000的大规模N-Queen问题,能在200s左右的时间求得精确解.

    Abstract:

    Multi-Agent system (MAS) theory has raised more and more attention from researchers and is experiencing a rapid development in recent years. Many methods based on MAS are emerged and proved successful in solving certain problems, and the AER (Agent-environment-rules) model is one of them used in solving constraint satisfaction problems (CSPs). But the statistic strategy for Agents constrains its ability in problem solving. To tackle this problem, simulated annealing (SA) is introduced to provide Agents with more active and effective strategies. Thus, the application of MAS and SA is successfully combined to form an effective model, SAAER (simulated annealing based AER) model, for solving the CSPs. Results from experiments on the classical CSPs, such as N-queen and coloring problems, show that SAAER model can solve the CSPs at a more effective and stable level. For a large-scale N-queen problem, when N=10000, a precise solution can be obtained in about 200 seconds.

    参考文献
    相似文献
    引证文献
引用本文

朱孟潇,宋志伟,蔡庆生.一个基于模拟退火的多主体模型及其应用.软件学报,2004,15(4):537-544

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-04-30
  • 最后修改日期:2003-10-14
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号