基因序列分析软件Hmmpfam的可扩展并行性能优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Grand Fundamental Research 973 Program of China under Grant No.G199508032805(国家重点基础研究发展规划(973));the National High-Tech Research and Development Plan of China under Grant No.863-2002AA104570(国家高技术研究发展计划(863))


Scalable Parallel Performance Optimization of the Gene Sequence Analyzing Software Hmmpfam
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于MPI(message passing interface)平台实现了HMMER软件包核心程序之一Hmmpfam的大规模并行计算.该版本针对原PVM(parallel virtual machine)并行版本在并行规模扩大后,master易成为通信瓶颈的问题,对通信结构进行了优化,提出了一种新的三层通信结构,在序列和HMM模型的两个层次上实现了并行化,并分别提供了有效的负载平衡策略,同时优化了I/O性能,在700多台处理机上达到95%的效率.

    Abstract:

    A scalable parallel MPI (message passing interface) version of the popular protein structure prediction tool Hmmpfam is presented, which is one of the kernel programs in the HMMER package. The master process in the previous PVM (parallel virtual machine) version is a communication bottleneck, and the speedup will decrease rapidly when running on large scale parallel systems. A novel three-level communication structure is presented, by which the parallel processing at sequence level and HMM model level is obtained in both. Meanwhile, the load-balance strategies to sequence level and HMM model level distribution are provided separately. Since disk access for getting HMM model costs very much, a so-called once load strategy is provided to reduce the cost. By all these optimization methods, 95% in parallel efficiency is achieved when running on a parallel computer containing more than 700 processors.

    参考文献
    相似文献
    引证文献
引用本文

陈军,赵文辉,莫则尧,李晓梅.基因序列分析软件Hmmpfam的可扩展并行性能优化.软件学报,2004,15(2):170-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-03-24
  • 最后修改日期:2003-05-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号