推广的多值指数双向联想记忆模型及其应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the Assisting Project of Ministry of Education of China for Backbone Teachers of University and College (国家教育部高等学校青年骨干教师资助项目)


An Extended Multi-Valued Exponential Bi-Directional Associative Memory Model and Its Application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    推广了Wang的多值指数双向联想记忆(multi-valued exponential bi-directional associative memory,简称MV-eBAM)模型,使其成为所提出的推广的多值指数双向联想记忆 (extended MV-eBAM,简称EMV-eBAM) 模型的一个特例.EMV-eBAM具有比前者更高的存储容量和纠错性能,因此利用这种性能,设计了一种基于联想记忆的新型图像压缩算法.该算法在无噪声情况下具有与矢量量化(vector quantization,简称VQ)算法相近的性能,而在双重(信道和图像)噪声环境下则具有显著的抑制效果.对比实验结果显示,在添加5%椒盐噪声下,该算法几乎能完全排除噪声干扰,而VQ则反而放大了噪声.该算法的另一个优点是,当在差错信道中传送时,可以获得比采用循环纠错码更强的纠错性能.因而,该算法具有较强的鲁棒性.

    Abstract:

    An extended multi-valued exponential bi-directional associative memory (EMV-eBAM) model is presented in this paper based on Wang’s MV-eBAM model, which is a special case of EMV-eBAM (extended MV-eBAM). EMV-eBAM has higher storage capacity and stronger error-correcting capability. Using these performances in image compression, a novel image compression algorithm based on EMV-eBAM is proposed. In noise-free situations, this algorithm can acquire similar performances compared with vector quantization algorithm (VQ). However, in noisy context, this algorithm possesses strong noise-restraining capability. The experimental results show that while VQ amplified 5% random noises appended in the image, this algorithm can hold back nearly all noises and acquire similar performances as in noise-free context. Furthermore, in transmitting there may be some errors in the channel, in this situation, this algorithm has much better error-correcting capability than the result by using the cyclic encoding method, so this algorithm is a robust image compression algorithm.

    参考文献
    相似文献
    引证文献
引用本文

张道强,陈松灿.推广的多值指数双向联想记忆模型及其应用.软件学报,2003,14(3):697-702

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2002-01-29
  • 最后修改日期:2002-05-13
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号