基于支持向量机的渐进直推式分类学习算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60033020 (国家自然科学基金)


A Progressive Transductive Inference Algorithm Based on Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未知样本建立一套进行识别的方法和准则.较之传统的归纳式学习方法而言,直推式学习往往更具普遍性和实际意义.提出了一种基于支持向量机的渐进直推式分类学习算法,在少量有标签样本和大量无标签样本所构成的混合样本训练集上取得了良好的学习效果.

    Abstract:

    Support vector machine is a new learning method developed in recent years based on the foundations of statistical learning theory. It is gaining popularity due to many attractive features and promising empirical performance in the fields of nonlinear and high dimensional pattern recognition. TSVM (transductive support vector machine) takes into account a particular test set and tries to minimize misclassifications of just those particular examples. Compared with traditional inductive support vector machines, TSVM is often more practical and can give results with better performance. In this paper, a progressive transductive support vector machine is devised and the experimental results show that the algorithm is very promising on a mixed training set of a small number of unlabeled examples and a large number of labeled examples.

    参考文献
    相似文献
    引证文献
引用本文

陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法.软件学报,2003,14(3):451-460

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2001-09-25
  • 最后修改日期:2002-02-26
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号