基于内容图像检索的特征子空间抽取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

Supported by the National Natural Science Foundation of China under Grant No.69823001 (国家自然科学基金); the National Grand Fundamental Research 973 Program of China under Grant No.G1998030509 (国家重点基础研究发展规划(973))


Feature Subspaces Extraction for Content-Based Image Retrieval
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为一种有效的解决手段,相关反馈(relevance feedback)技术在基于内容图像检索(content based image retrieval)的研究中得到了深入的发展.尽管有效,已有的反馈算法却始终没有解决特征空间的有指导降维和特征中的噪声去除这两个问题.提出了一种新的方法,通过对用户在检索过程中提供的正反馈样本在各特征空间中的分布特性,利用主成分分析(principal component analysis)来消除特征中的噪声,实现了对特征空间进行有效的降维.试验结果显示,该方法在不牺牲检索精度的前提下提高了检索速度,降低了存储复杂度.

    Abstract:

    Relevance feedback (RF) is used as an effective solution for content-based image retrieval (CBIR). Although it is effective, the RF-CBIR framework does not address the issue of feature extraction for dimension reduction and noise reduction. In this paper, a novel method is proposed for extracting features for the class of images represented by the positive images provided by subjective RF. Principal component analysis (PCA) is used to reduce both noise contained in the original image features and dimensionality of feature spaces. The method increases the retrieval speed and reduces the memory significantly without sacrificing the retrieval accuracy.

    参考文献
    相似文献
    引证文献
引用本文

苏中,马少平,张宏江.基于内容图像检索的特征子空间抽取.软件学报,2003,14(2):190-193

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2001-07-23
  • 最后修改日期:2001-07-23
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号