关于切换回归的集成模糊聚类算法 GFC
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


An Integrated Fuzzy Clustering Algorithm GFC for Switching Regressions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    已经有多个方法可用于解决切换回归问题.根据所提出的基于Newton引力定理的引力聚类算法GC,结合模糊聚类算法,进一步提出了新的集成模糊聚类算法 GFC.理论分析表明GFC 能收敛到局部最小.实验结果表明GFC在解决切换回归问题时,比标准模糊聚类算法更有效,特别在收敛速度方面.

    Abstract:

    In order to solve switching regression problems, many approaches have been investigated. In this paper, anintegrated fuzzy clustering algorithm GFC that combines gravity-based clustering algorithm GC with fuzzy clustering is presented. GC, as a new hard clustering algorithm presented here, is based on the well-known Newton's Gravity Law. The theoretic analysis shows that GFC can conve rge to a local minimum of the object function. Experimental results show that GFC for switching regression problems has better performance than standard fuzzy clustering algorithms, especially in terms of convergence speed.

    参考文献
    相似文献
    引证文献
引用本文

王士同,江海峰,陆宏钧.关于切换回归的集成模糊聚类算法 GFC.软件学报,2002,13(10):1905-1914

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2001-03-29
  • 最后修改日期:2001-08-31
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号