An Algorithm of Mining Personal Moving Patterns in a Wireless Communication Environment
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向下过滤技术相结合,采用图存储压缩数据集方法,利用非频繁项集分解子图和频繁长模式过滤数据集相结合的技术,大大减少了迭代次数,降低了CPU时间.最后给出了算法性能比较和算法分析.结果表明,该算法是有效的.
Abstract:
Discovering moving pattern is a key problem of mobile management in wireless communication. In this paper, an algorithm named SAM (split and merge) is proposed to mine MFMP in sequential datasets of moving object, and then to provide services for moving object management. This algorithm combines the bottom-up search and top down filter and uses data structure——graph to store datasets, infrequent item sets to split moving pattern graph, and long moving pattern to filter data sets strategy, and then the iteration number and CPU time are reduced greatly.Lastly,the performance analysis and the comparison of the algorithms are provided.Experimental results show that the SAM algorithm outperfprms other existing algorithms.