五次PH曲线的Hermite插值
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(69973041);国家重点基础研究发展规划973资助项目(G1998030600);浙江省自然科学基金资助项目(698025)


Hermite Interpolation by PH Quintic
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用复分析和曲线积分方法研究了满足Hermite插值的五次PH曲线的构造,导出了其相应的Bézier表示.所得五次PH插值曲线不但具有连续的单位切矢和有向曲率,而且其弧长函数是原参数的多项式函数,具有精确的有理Offset代数表示和优美的几何解释,可灵活处理拐点.

    Abstract:

    Using complex analysis and curve integration, the construction of PH quintic which satisfies Hermite interpolation conditions is studied in this paper and its corresponding Bézier representation is derived. The PH quintic has continuous unit tangents and signed curvature, and its arclength function is the polynomial of its parameter. The PH quintic has offset curve that admits exact rational algebraic representation, intuitive geometrical interpretation and can flexibly deal with inflection point.

    参考文献
    相似文献
    引证文献
引用本文

陈国栋,王国瑾.五次PH曲线的Hermite插值.软件学报,2001,12(10):1569-1572

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-01-25
  • 最后修改日期:2000-06-12
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号